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A DYNAX"IC ANALYSIS OF PIEZOELECTRIC STRAINED ELEM1ENTS

ABSTRACT

This report is addressed to the dynamic analysis of piezo-
electric structural elements under a static mechanical bias.
In the first part of the report, the current literature
pertaining to the dynamic applications of piezoelectric
crystals is reviewed; attention is especially confined to
vibrations of structural elements. In the second part,
the fundamental equations of piezoelectric media are
expressed in variational form as the Euler-Lagrance ecuations
of certain integral and differential types of variational
principles. These variational principles are deduced from
a general principle of physics by augmenting it throuch
?riedrichs's transformation. In the third Dart, the system
of approximate lower order governing equations of piezo-
electric strained elements is systematically and consistently
deduced in invariant form from the three-dimensional
equations of piezoelectricity by means of the variational
principles. The governing equations accommodate all the
types of extensional, flexural and torsional as well as
coupled motions of piezoelectric one-and two-dimensional
elements. Also, the uniqueness of solutions is examined
and two unified numerical algorithms which are based on
Kantorovich's method and the method of moments are described
for solutions of the governing equations.
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CHAPTER I

RECENT PROGRESS IN THE DYNAMIC APPLICATIONS OF
PIEZOELECTRIC CRYSTALS

ABSTRACT

This chapter presents an updated review of ooen literature
concerned with the dynamic applications of piezoelectric
crystals. Representative current literature as well as
previously surveyed literature that pertains to recent
applications are reviewed for waves and vibrations in piezo-
electric one-dimensional and two-dimensional elements.
Exoerimental works and some numerical methods are briefly
discussed, and future research needs are indicated.

1- INTRODUCTION

This review, the tifth in a series of surveys on the dynamic
applications of piezoelectric crystals, deals with current
open literature pertaining to waves and vibrations in piezo-
electric structural elements. Accordingly, it sunolements
the earlier review papers rI-31 and should be considered
in conjunction with them. The Present compilation summarizes
the rapid advancement of the subject due to the demand of
both civil and military technology since 1983.

Theoretical as well as experimental investigations have been
increasinglv continuina for better design and better aupli-
cations of piezoelectric elements since the last review
article [3j . Comprehensive recent articles have discussed
the design and acolications of these elements p4-9. , as have
several monographs and books [10-2111. However, a detailed
survey of design and application is excluded herein, as
before.

The purpose of this review is to guide and to stimulate the
reader through the pertinent literature that covers the most
recent contributions to one-dimensional and two-dimensional
piezoelectricity. Essentially, the revic;.' chapter contains
seven sections. The next section has to do with the funda-
mental studies; the nature of piezoelectric materials, the
basic equations of piezoelectricity and the associated
variational formulations are taken up. The third section
reviews vibrations of piezoelectric structural elements;
the works published on rods, plates, disks, shells, and



2

layered and composite structures are surveyed. The fourth
section is devoted to the survey of works on accoustic
waves and energy trapping in piezoelectric materials; the
bulk waves, Rayleigh and Love waves, Stoneley and Lamb
waves, and Bleustein-Gulyaev waves are considered. The
fifth section deals with the studies on fracture and
fatigue of piezoelectric materials, and the sixth section
emphasizes the methods of numerical solutions for the
equations of piezoelectric elements. In section 7, remarks
on and indications of future possible trends in niezoelec-
tricity conclude the chapter.

2- FUNDAMENTAL STUDIES

Piezoelectric synthetic materials with electric and elasto-
electric nonlinearities- in particular, piezoceramics and
polymers-have attracted considerable attention with regard
to their nature and the origin of induced piezoelectricity
in recent years 122-251. The physical -rooerties of some
piezoceramic and polymeric materials and their dependence
on certain parameters have been investigated experimentally
[5,26-33j The piezoelectric and pyroelectric behaviors
of polyvinylidene fluoride, a semicrystalline polymer, have
been observed after the application of hich electrical
stresses L27 1 . Measurements showed that the effect of
hydrostatic pressure on the piezoelectric prcperties of the
polymer was very small; the material was also stable with
oressure cycling to a certain pressure value '28'. Lang
291 has recently compiled an extensive bibliography on

piezoelectricity and pyroelectricity of polymers and their
applications. The dynamic characteristics of a number of
piezoceramic materials have been measured 730-311 , as has
the variation of piezoelectric strain constants in ceramics
under the action of uniaxial compression 732]. All the
piezoelectric coefficients and elastic compliances of a
crystal have been determined by the resonance method 733].
Experiments have been also done in order to investigate the
electromechanical properties of Qiezoceramics under cyclic
loading L34-36j . Another study has been conducted by use
of an optical unit for the precise measurements of
piezoconstants -37].

As a branch of the theory of electro-magneto-thermoelasticiy,
the theory of piezoelectricity - which is an anisotropic,
quasi-electrostatics, polarizable but not-maanetizable and
non-conductiong field-has been well established on the basis
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of the fundamental axioms of motion and those of material
constitution L3 3 .'. The fundamental equations of linear
piezoelectricity and thermopiezoelectricitv have been
recorded r39-42 andF43-46T, as have those on nonlinear
piezoelectricity L47-50. In piezoelectricity, there may
exist either an intrinsic nonlinearity which is peculiar to
piezoelectric material or an induced nonlinearity due to the
deformation of piezoelectric material. Gagnepain '51 has
dealt with the elastic and piezoelectric nonlinearities
in a crystal and discussed their influence on the behaviour
of acoustic devices. The form invariant constitutive
relations have been derived for transversely isotropic
piezoelectric materials ý52 . On the other hand, quasi-
variational principles for the induced nonlinearity have
been deduced from Hamilton's principle by the authorr-53-55-
that generate all the three-dimensional equations of
strained piezoelectric continua. He has also derived, bv
means of the principle of virtual work, certain variational
principles, including thermal effects for a piezoelectric
medium under mechanical bias [56,573 Hailan [58" has
explored the consonance of state variables of a piezoelectric
body and systematically prooosed the associated variational
principles. Other variational orincioles have been formulated
that may be extended to account for the equations of non-
linear piezoelectricity .59 and linear thermooiezoelectricity

Moreover, Kudrvavtsev 6 1 7 has derived a system of
linear ecuations for electrically polarized ceramics that
differs from corresponding equations for a piezoelectric
medium; it accomodates initial mechanical stresses due to
the polarization.

In the oresence of moving dislocations and disclinacions
(defects), the fundamental equations of thermopiezoelectricity
nave been studied for the case when the plastic deformation
caused by the defects has been taken to be unrelated to the
thermociezoelectric effect of materials L

6 2
'. An electric

and elastic multipole approach has been develoaed in studyhli
the chysical behaviour of various defects (dislocation,
inhomogeneity) in finite piezoelectric media L63. . Also,
the defects have been studied in an infinite medium under
the influence of both mechanical and electric field loading

64 The internal strains induced in piezoelectric
crystals have been considered for given external strains
produced either at constant stress or at constant electric
field '651 . Electroacoustic equations have been constructed
for piezoelectric powders fi67 and for nonlocal piezoelec-
tricity '677
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3- VIBPATIONS OF STRUCTURAL ELEMENTS

In investigating the vibrational characteristics of piezo-
electric structural elements, the coupling of elastic field
and quasi-static electric field as well as the inherent
anisotropy of materials add stupendous complexities in
numerical computations. Accordingly, the approximate lover
order equations of elements have typically been deduced
from the three-dimensional equations of piezoelectricity.
The equations of elements are then approximately solved for
the characteristics of any specific case. However, the
vibrational characteristics have been determined by solving
approximately the three-dimensional equations for a few
special cases. This approach is still being developed and
is not common in piezoelectricity, despite the help of
large computers. Characteristics sensitive to certain
parameters have been examined with the equations of elements
Analytical and corroborated experimental studies have been
•.rveyed for the vibrational characteristics of structural
elements used mostly in piezoelectric devices.

RODS. Investigations concerning the analysis of oiezoelec-
tric rods have been directed toward either derixring mac-
roscopic equations of rods r66-77] or solutions of specific
problems 178-971 ; both have been studied at low-frequency
vibrations. Tiersten and Ballato 168J have obtained mac-
roscopic differential equations accounting for the nonlinear
extensional motion of thin piezoelectric rods and have
treated both the intermodulation and nonlinear resonance of
quartz rods. Milsom and his co-workers 69,70, have
described a three-dimensional mode-matching theory for
coupled-mode piezoelectric rectangular bar; they showed
good agreement between theory and experiments for many
parameters of the bar resonator. Green an- Naqhdi §71] have
formulated a theory of isothermal forced vibrations of
piezoelectric crystal rods as a special case of their one-
dimensional electromagnetic theory. Kittinger and Tichy
722 have developed a material frame theory of the influence

of an electric biasing field on the extensional resonance
frequency of an electroded thin piezoelectric rod. In a
series of papers, the author and his co-workers T73-79] have
deduced, by use of Mindlin's method of reduction r'0]
various one-dimensional electroelastic equations of crystal
bars from the three-dimensional equations of niezoelectricit
The electroelastic equations account for all the types of
extensional, flexural and torsional as well as coupled iotior
of bars for both low and high frequencies. The effect of
mass loading of electrodes 'L4] , the effect of mechanical
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bias r 75 , the temoerature effect [767 and the elastic
nonlinoarties [77,7b8 have been all taken into account, and
an acolication to biomechanics has been described 7 9. The

sufficient conditions have been enumerated for the uniqueness
in solutions of the linear electroelastic equations by use
of either the classical energy argument [737 or the logaritmmic
convexity argument [77].

An analysis of the flexural-mode equations has been presented
for a rod with a vibration isolator [81]. Electrode stress
effects have been calculated approximately for length-
extensional and flexural resonant vibrations of long, thin
bars of quartz [82] . The mechanical behavior of a piezo-
electric bar with an electrical voltage as well as a time-
dependent flux of heat at one end has been studied L831
A simole one-dimensional model has been used to investiaate
the effect of the relaxation time on the behavior of a semi-
infinite piezoelectric rod under a thermal shock at its end
ý84 . Solov'ev [851 has recently examined the influence of
the electroded zone on the natural frequency dominated
thickness resonance of a piezoceramic rod of rectangular
cross-section under the conditions of plain strain. The
extensional vibration of a cylindrical rod with longitudinal
piezoelectric coupling has been dealt with in an approximate
crocedure. The depolarizing-field effect has been analyzed
in ýo::s of finite and infinite lengths [86] . A detailed
numerical analysis of the dispersion relations has been
reported for the axisymmetric normal waves of a piezo-
elecrically active bar waveguide [87] The vibrational
dissication characteristics of a piezoceramic bar have been
considered ý88" as has the electrical exication of an
asym =etrically radiating bar [89].

Furthermore, Chenghao, Zheying and Yulona [90,912 have
concentrated on studying the longitudinal vibrations of
piezoelectric bar with lateral and longitudinal polarization
and those with electric field perpendicular and paralel to
the direction of vibration. The forced longitudinal vibra-
tions of a viscoelastic piezoceramic rod with transversal
polarization have been examined under the influence of
harmonic electrical exicaticn [92]. Paul and Venkatesan
'93,94ý have studied the vibrations of a piezoelectric solid
cylinder of circular, elliptical and arbitrary cross section
by use of an asymptotic method and Fourier's expansion
collocation method. Other contributions are available on
the dynamics of piezoelectric rods [95-99].

PLATES. Due to their extensive use as a design feature in

piezoelectric devices, studies concerning the dynamic
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behavior of plates are being continued to grow at a rapid
pace after the publication of previous reviews 1I-3,39,100-
1021. A few studies were directed toward deriving the
approximate, two-dimensional eauations of plates on the
basis of the general differential equations of niezo-
electricity [103-109]. The equilibrium equations of trans-
versely inhomogeneous piezoelectric elate have been obtained
by a method of asymptotic expansion F1037; these macroscopic
equations can be readily extended to account for vibrations
of piezoelectric plates [1047. Similarly, the equations of
low-frequency vibrations of piezocrystalline plates have
been derived by the asymptotic method F105]. The governing
equations and some experimental results concerning GT-type
quartz crystal plates have been described 106-1 . By means
of a variational-asymptotic method, t .. macroscopic eceationi :
have been established which govern the high-frequency long-
wave vibrations of miezoceramic elates with thickness
polarization '107].- Mindlin E108] has obtained the two-
dimensional equations of motion of piezoelectric, doubly
rotated, quartz plate from the three-dimensional eauations
of linear piezoelectricity by expansion in power series of
the thickness coordinate of the plate. He then solved the
macroscopic equations for forced vibrations of electroded
ST-cut quartz plates and examined the effects of niezol1ectric
coupling and the mass of electrode coatings. By employina
Mindlin's method, Lee and his co-workers J109] have also
derived a hierarchical set of two-dimensional 9auations of
motion for piezoelectric crystal plates with or without
electrodes. Likewise, the author [57,1101 has presented a
nonlinear mathematical model for the dynamics of crystal
plates with or without a mechanical bias. Moreover, the
plane Piezoelectric problems have been studied by exoandina
the static electroelastic eauations into a series of trig-
onometric functions 111J . The stress state and the electri
field distribution have been determined in a piezoelectric
layer with a periodic system of electrcodes at its surfaces.

Many analytical studies have been devoted to solutions of
vibrations of piezoelectric plates excited in certain modes

112-1237 . The thickness dominated, vibrations of a plate

with electrod, on both its faces have been treated under
both the paraliel-field and perpendicular-field excitations
of the plate 4861 . The exact frequency equation for trans-
verse vibrations of a miezoelectric layer has been found
and then solved both numerically and by an asymptotic method

112,1132. Stevens and Tiersten [114] have calculated
changes in res-nant frequency with temperature for the
fundamental and some of the harmonic overtone thickness



modes of an electroded eurit'r Al-cut uuartz ulate dufhe to
the thermally? induced biasinq stresses and strains. Thev.
showed the inFluences of both contouring and electrode siz.z.
The extensional arid flexural biasing states have been
deter:;iined b,. means of a variational orocedure '115,1l&
Sinha and Tiersten, '117 have investigated thermally cgener-
a. !1, transient frequency excursions of the thickness modes
of a doubly-rotated quartz plate. Further, the thickness
modes of piezoelectric olates have been studied ý118_ using
z-transform techniques i].9] . These modes have been
considered by Chen-hao and Zhe-ying L120] in calculatins the
effects of the electrode load to the resonant freauencv,
displacement, and stress distribution. Lee and Hou [121_have recently dealt with the computations of frequencies
of thickness dominated vibrations for a doubly-rotated
piezoelectric crystal strio with a pair of electrode-elated,
traction-free edges. Ballato and his co-workers F122 stu-
died all three modes of the vibrations driven by lateral
fields. Stevens and Tiersten [ 1 2 3' have also oresented an
analysis of doubly rotated quartz plates vibrating in
thickness modes with transverse vibration. They assumed
small piezoelectric coupling and small wave numbers alone
the plate.

The case of pure thickness-resonance as well as that of
nonlinear thickness-resonance have been studied in detail
for an electroded contoured AT-and ST-cut quartz olate
!124 , as has the case of a vibrating polymer plate p125-

The steady-state vibrations of a thin piezoceramic plate-
polarized along its variable thickness have been examined
.126- . The possible existence of transverse backward waves
in p-iezoelectric plates, a relatively rare phenomenon, has
also been considered [127. ; critical conditions for its
existence were cointed out. Furthermore, analytical works
aimed at including the coupling of vibrational modes have
been reported '108,128,129 . An analysis has been carried
out for the coupling between the thickness-shear mode and
the flexural mode of a fully electroded plate; oredictions
"were in good agreement with experimental data .-128r . Mindlin
:108 has discussed the coupling of the fundamental thiickn'ess-
shear mode with flexure, extension and face-shear overtones
in an electroded, oiezoelectric plate. In addition, Shu-
chou 1297 investigated the fundamental modes of coupled
vibrations of piezoelectric plates and also has provided
simple analytic formulas for the resonant frequencies of
plates.

Various authors [130-133] have dealt with analytical inves-
tigations and experimental corroboration of vibrations of
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piezoelectric Plates. Ballato and his co-workers 7130-1311
treated crysal plates driven piezoelectrically in simple
thickness modes by thickness-and lateral-directed exciting
electric fields; they also reported experimental results.
Suchanek L132] has examined the influence of the electrodes
on the frequency of piezoelectric crystal plates by using
Mindlin's theory [39]; he demonstrated both theoretically
and experimentally that asymmetric electrode location rapidIly
reduced its elastic influence on freauency and discussed the
coupling of certain modes. The frequency sensitivity to
temperature has been calculated and measured for a thin
quartz plate excited piezoelectrically in thickness modes
L1333 . Experimental results coincide well with the analytical
results based on the thickness-vibration theory .l 0 0].
Bahadur and Parshad [134-136] surveyed some experimental
methods for determination of mode shapes, frequencies, and
amplitude of vibration of quartz crystals. The three-
frequency parametric interaction of elastic waves with
dispersion in a oiezoelectric rectangular plate has been
considered F1 3 72 ; velocity dispersion was determined from
an experiment with lithium niobate crystals 71377 . Addi-
tional experimental investigatinos have been carried out by
Hertl et al. [138] , Chenhao [139] , Yushin and Beice l40,
Songling and Yiyong [1417, Gruzinenko et al. 142•ana -
Bolkisev _j143] The in-olane vibration amDlitudes of
quartz crystals have been measured by a mechanical setup
that is insensitive to environmental disturbances 7138.
The piezoelectric damping configurations have been inves-
tigated for both the thickness and longitudinal vibrations
of a piezoceramic Plate [139] The nonlinear electroacoustic
effects have been studied in a piezoceramic slab F140].

DISKS. The ever-expanding use of disks as various active
elements of piezoelectric devices has stimulated remarkable
interest in vibrations of piezoceramic disks with thickness
or radial polarization. Bogy and Bechtel 7144] have
predicted the electromechanical behavior of non-axisymmet-
rically loaded piezoelectric disks with electroded faces.
The authors [145,1461 also studied the steady vibrations
of a piezoelectric disk interacting with an elastic half-
space using the results of their theory [144] ; the effects
of the contour modes were included. Planar vibrations have
been treated for a thin piezoceramic disk with metal elec-
trodes deposited on the side surfaces of the disk and
connected to an electrical load [147] . Moreover, the free
radial vibrations of a piezoceramic disk polarized in
thickness direction have been investigated [148] , as have
its vibrational characteristics [149] , and the frequency

r spectrum of coupled axial and radial vibrations of finite
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piezoceramic disks [150]. The stress distribution and the
electric induction developed in an annular disk of
inhomogeneous piezoelectric material spinning either with
uniform angular velocity [151] or with time varying anaular
velocity [152] have been studied. Karlash [153J has dealt
with energy dissipation during radial vibrations of thin
circular piezoceramic disks with thickness polarization.

Using Mindlin's method [154], a system of two-dimensional
equations of successively higher orders of approximation
has recently been derived for vibrations of piezoelectric
disks under initial stresses [1 5 5] . A system model of the
thickness mode piezoelectric disk has been derived from the
fundamental equations of piezoelectricity [156] . Although
analytical studies with experimental justification have
been pursued in this area [157-161] , more work is needed.
The radial modes of piezoceramic disks with open-circuit
electrodes have been treated [157] . An analytical model
has been proposed for evaluating the contribution of radial
modes to the pulsed ultrasonic field radiated by a thick
piezoelectric disk; the efficiency of the model has been
shown by agreement between the results of the model and
those of corresponding experiments [153 . A theoretical
and experimental research has been conducted on responses
to resonance and oscillation frequencies and temperature
[1597 . Further contributions include work on desensi-
tization with increasing hydrostatic pressure in a flexural
piezoceramic disk [160] and an empirical treatment of
thickness modes in circular AT-cut quartz plates with
respect to the diameter and mass loading of electrodes [161].
Ohga and his co-workers [162,163] have examined both
theoretically and exoerimentally the flexural vibrations of
a piezoelectric disk. Besides, Chongfu et al. [164] and
Shouliu [165_ have contributed to the radial and thickness
vibrations of a piezoelectric disk, including their
exoerimental verification.

Experimental determination of the vibrational characterictics
has been reported for thin piezoceramic disk [166-175]
The mechanical resonant frequencies of disks excited
electrically have been investigated by Chen [166-170C The
experimental evidence in these studies indicated that the
number of purely mechanical resonances increases with
decreasing disk thickness and that the domain structure
affects not only the number of these resonances but also
their amplitudes. Vibration velocity distributions and
frequency spectra of thick disks with and without bevelling
have been measured as a function of the diameter-to-thickness
ratio [171 An experimental investigation has beenconducted
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to determine the effect of different edge conditions on the
response of piezoelectric disks [172] ; response was
relatively insensitive to changes in edge conditions. The
transient fields of pulsed ultrasonic sources radiating into
water have been investigated using thick piezoelectric disks
and broadband thickness-resonant disks as sources L173].
The spectral characteristics and amplitude distribution of
the coupled flexural and thickness-shear vibrations of AT-
cut quartz disks have been studied [174,1751

SHELLS. Of the methods for redlcing the three-dimensional
differential equations of elastodynamics [39,104,154], the
asymptotic method has been used to derive the approximate,
two-dimensional equations of piezoceramic shells polarized
along one of the families of coordinate lines of the middle
surface [176-178]. Using again an asymtotic method,
Rogacheva [179,1801 has examined the free vibrations of
piezoceramic shells of arbitrary shape. He has classified
various types of vibrations and formulated the general
theorems of electroelasticity. By the method of symbolic
integration in combination with averaging of the electric
potential over the shell thickness, the basic macroscopic
relations have been formulated for a thin piezoelectric
shell with thickness polarization and variable stiffeness
[181] . These relations have then been used to examine
the steady-state longitudinal vibrations of a cantilever
rod of linearly varying thickness. Piezoceramic shells
with thickness polarization have been treated [182j
Following the same procedure as Senik [181], the governing
equations were constructed for piezoceramic gently sloping
shells with meridional polarization; transverse shear
deformation was considered [183] as were governing equations
for piezoceramic shells with various directions of oolarization
[184,185]. A modified theory of piezoceramic shell polarized
along the thickness has been developed by taking into
account the transverse shear and the rotatory inertia [186].
By the method of series expansions in the thickness coordi-
nate , Khoma [187,188] has derived the two-dimensional
equations of piezoelectric and thermopiezoelectric shells.
Similarly, the series expansions of field quantities in
terms of Jacobi's polynomials have been used to construct
a refined theory for axisymmetric waves in piezoceramic
cylinders [189] . Green and Naghdi [190] have concerned
with a theory of piezoelectric membranes as a special case
of their theory of shells in which account has been taken
of electromagnetic effects; this work has been mainly based
on [191]
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Within the limit of classical theory of elastic thin shells,
that is, under the Kirchhoff-Love hypotheses of shells

191 , Honazhang [1921 and Shuchu [193] have developed a
heory of thin shellsof radially polarized piezoceramic

cylinder. As an application of Schuchu's theory, the
electromechanical parameters of piezoceramic thin cylindrical
tube transducers have been calculated [194] Again, under
the Kirchhoff-Love hypothesses for the mechanical variables
and the corresponding hypotheses for the electrical variables,
Karnaukhov and Kirichok [195] have constructed a thermomechan-
ical theory for harmonic vibrations of viscoelastic
piezoceramic shells, including the temperature dependence of
materials. Chao [196,197] has presented a theory of piezo-
electric and piezoceramic shells by taking a variational
procedure as the basis of his derivation. Further, by a
variational method of reduction [39,80,198-2001 , the author
Fl,57,201-204] has systematically derived various theories
of piezoelectric shells, including the effect of mass loading
of electrodes, the thermal effects and the effect of mechan-
ical biasing stresses for both low and high frequency
vibrations. He has examined the uniqueness in solutions of
the governing equations of piezoelectric and thermooiezo-
electric shells. On the other hand, Rogacheva [2051 has
dealt with the Saint-Venant type conditions in the theory
of piezoelastic shells with electrodized face surfaces.

Many investigators have studied the axisymmetric and non-
axisymmetric motions of piezoceramic hollow cylinders with
axial, radial and circumferential polarization [206-227]
through the use of special functions (e.g., [2083), power
series representation of field variables in the radial
coordinate 2097, numerical integration of the initial
equations by the method of discrete orthogonalization L210 ,
the finite element method and alike. The axisymmetric
motion of radially polarized piezoelectric hollow cylinders
has been investigated [206,211 212|. The longitudinal
:212-215] and circumferential L2 1 6J as well as torsional

wave motions [217j of a piezoelectric solid cylinder have
been studied in detail. Loza and his co-workers [218-220]
have dealt with the propagation of axisymmetric and non-
axisymmetric waves in a piezoceramic hollow cylinder with
radial and axial polarizations, and he [200] has also
treated the axisymmetric acoustoelectric wave propagation
in the cylinder with circumferential polarization. The
dynamic stress state has been determined in a comoound
iezoceramic hollow cylinder with thickness polarization

L2 2 1 7. Paul and Venkatesan [222]have considered the
longitudinal and flexural modes of a hollow circular cylinder
of piezoelectric ceramics. The forced axisymmetric vibrations
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of a cylindrical oiezoceramic shell with radial polarization
[223] and the nonstationar vibrations of the shell with
circular polarization [2241 have been studied. Burdess
[225] has presented the equations of motion for a thin piezo-
electric cylinder gyroscope. Then he has determined the
dynamic response of gyroscope to constant and harmonic rates
of turn. The natural free oscillations of a class of
cylindrical piezoelectric ceramics and the correspondin
displacement amplitudes have been obtained [2261 Tingrong
[227] has reported a new measurement method and used it for
measuring the material constants of a radially polarized
thin piezoceramic cylindrical tube.

The interaction effects of the radiation load and various
modes of vibrations of a piezoceramic cylindrical shell have
been examined for the case when the shell with thickness
polarization is partially in contact with an acoustic
medium and surrounded by a soft shield [228] . In a similar
case, Babaev and Savin [229] have examined the action of
transient electrical signal on the motion of a thin-walled
cylindrical piezoceraimic shell with circumferential polariz-
ation, which is surrounded by and filled with a compressible
fluid. Shu-chu [193] has dealt with the scattering of Dlane
waves by a radially polarized piezoceramic cylinder using
Green's function and the method of separation of variables.
Loza and Shul'ga [230,231] have analyzed the axisymmetric
vibrations of a hollow piezoceramic sphere with radial
polarization. The dissipative heating of a viscoelastic
piezoceramic ball with temperature-dependent properties has
been investigated [232]. The radially polarized ball performs
radial vibrations in an acoustic medium under harmonic
excitation. Additional works have included some analytical
and experimental results for fezoceramic spherical and
cylindrical shells [233-237].

LAYERED AND COMPOSITE STRUCTURAL ELEMENTS. With their
desirable vibration characteristics for ultrasonic applic-
ations, piezoelectric layered and composite structural
elements have been widely used in different technologies.
The use of composite piezoelectric materials and the basic
ideas underlying their sum and product properties have been
described [238-241] . Basically two types of macromechanical
models exist for the analysis of these structural elements:
the effective modulus model and the effective stiffeness
model, as in composites [242]. The effective modulus model
replaces an element by a representative homogeneous medium
with the aid of the averaged material constants of element
constituents. This model, although it is relatively simple,
omits the coupling of adherent layers in laminated corposites.
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The extension of the Lagrange and Karman models of plates as
well as the Kirchhoff-Love models of shells to crystal lamina
elements leads to their effective modulus model. Along this
line, a macromechanical model of regular oiecewise-
homogeneous structures with piezoceramic matrices has been
presented [243]. The effective constants of randomly
inhomogeneous piezoactive (piezoelectric and piezomagnetic)
ceramics have been determined [244]. Similarly, the effective
properties of composite piezoelectric ceramics stochastically
reinforced by spheroidal inclusions have been considered;
from this follow as limit cases materials with laminated,
unidirectional fibrous and granular structure [245]. On the
other hand, the effective stiffeness model combines both
the physical and geometrical properties of lamina constit-
uents and incoroorates all their essential features. With-
in the concept of this model, the one-dimensional and two-
dimensional approximate equations of laminae have been
consistently derived, including a theorem of uniqueness
[1,74 . As an extension of classical models, the macroscopic
relations of electroelasticity have been derived for
multilayer piezoceramic plates and shells [246-255], their
steady-state vibrations have been reported in some special
cases.

Notably, Parton and Senik [246] have derived macroscopic
equations of multilayer piezoceramic shells with thickness
polarization of the layers. They have also treated the
vibrations of a shallow spherical shell of three layers.
Likewise, Karnaukhov and his coleagues [247-250] have
constructed the governing equations of laminated piezoceramic
plates and shells by taking into account the geometrical
nonlinearity, the effect of temperature, and, in particular,
the effect of viscosity. The viscosity effect is important
for polymeric materials with polarization in hydroacoustics
and, in fact, piezoceramic materials are viscoelastic in
terms of their mechanical nature [251] . The electrovisco-
elastic layered shells have been polarized through their
thickness or in one coordinate direction. The effect of
temperature has been also considered in describing the
dynamic behavior of multilayered piezoceramic shells with
thickness polarization under harmonic excitation [252]
Loza and his co-workers 1253] have described an algorithm
in investigatine the propagation of nonaxisymmetric
acoustoelectric waves in a layered circular cylinder with
axial, radial or circumferential directions. Shu-chu
"-25: has treated the coupled vibrations of a composite
cylinder in a way convenient to engineering design and
estimation. In addition, the radial mode oscillations have
been analyzed for a piezoelectric element consisting of



14

several concentric cylinders [256] The influence of
height of a hollow, two-layer piezoceramic cylinder has
been investigated on the spectrum of its resonance frequen-
cies T257] Moreover, the anti- and axi-symmetric elektro-
mechanical wave propagations have been considered in long
bone [258] and [2593 where the bone has been modelled as
a two-layered cylindrical shell.

Other studies have involved a close examination of resonances
and modelling of comoosite piezoelectric plates [260-269'.
Auld and his co-workers [260,261] developed a Floauet
theory of wave propagation in periodic composites that
has been shown to agree with experiment. The thickness-
extensional vibrations of a composite plate [262] have been
studied in detail by use of a variational principle due to
Tiersten [39] . The flexural vibrations of a piezoceramic
laminae have been numerically investigated 7263 . Ting-
rong [264-266] has dealt with the forced vibrations of
piezoceramic composite circular plate excited either with
voltage or with homogeneous pressure. The effect of
attachment conditions has also been considered on the
parameters of a two-layered piezoceramic plate [267]
The geometry of composite plates has been analyzed by the
finite difference method r268] . The stress-strain state
of layered-step ed iezoelectric disk has been analyzed
under flexural 12701 and coupled flexural-shear oscillations
_271]. Also, a method of iteration has been presented for

the coupled dynamic analysis of a layered circular disk
with thickness polarization. The influence of the depenlence
of material properties on temperature has been considered
[272] On the other hand, a general transfer matrix

description of arbitrarily layered piezoelectric structures
with two electrodes has been derived [273] . Besides,
research has been conducted in the area of composite and
layered piezoelectric rods [272,274,275] . All the elastic,
piezoelectric and dielectric constants have been analytically
derived for a one- and two-dimensional multilayered
structures and some exoeriments have been carried out
[274] . Also, the results of an experimental study of
vibrations of composite piezoelectric rod with longitudinal
polarization have been reported [275]

4- WAVES IN CRYSTALS

In piezoelectric crystals, the interaction between the
elastic waves and the electromagnetic waves is weak because
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their velocities are very different. Therefore, the Lwtw
types of wave propagation have been always treated
independently in linear piezoelectricity [276I. AttentLon
has recently been paid to the interaction of electromagnetic
and acoustic waves due to the nonlinear piezoelectric
effect [277] and that in piezoelectric plates [278].
Gilinskii and Vdovin [279] have described the propagation
of acousto-electromagnetic pulses in a bounded piezoelectric
crystal, including the coupling of elastic and electro-
magnetic waves. However, only the propagation of elastic
waves is surveyed herein. Some reviews and treatises have
been mentioned [2,3,8,12-18,276,280-289]. Work done on bull-
waves in unbounded medium and that on surface waves in semi-
infinite medium is reviewed in this section. Ble'usteir-
Gulyaev, Rayleigh and Love, and Stoneley and Lamb waves
are also discussed, as is energy trapping.

BULK WAVES. The research on bulk acoustic waves and
especially on surface skimming bulk waves and reflected
bulk waves has been carried out in microwave acoustic
devices [290-295]. Josse and Lee [290] have reported an
analytical solution that describes the analysis of exzit-
ation, interaction and detection of bulk and surface waves
on piezoelectric crystals. He and his co-workers [291-2931
have theoretically analyzed the reflection of bulk
acoustic waves, the amplification of surface skimmina
SH waves and the amplification and convolution of reflected
bulk acoustic waves in rotated Y-cut quartz. The excit-
ation and detection of surface-generated bulk waves have
been treated [294,295]. The synchronous interactions of
bulk •custic waves have been investigated in piezoelectric
insulator crystals with spatially inhomogeneous structure
[296• . The bulk-surface electroacoustic waves have been
considered at the interface of a piezoelectric with a
semiconductor [297]. The conversion of bulk strain waves
has been examined at a frequency boundary in a semi-
infinite piezoelectric crystalline medium [298]. The
reflection of bulk acoustic waves has been studied in a
layered piezoelectric (insulator)-gap-semiconductor struc-
ture, as has experimentally the linear and nonlinear
acoustoolectronic interaction in such a structure [299,300].
An interactive computer-aided analysis has been described
for calculating the main properties of bulk acoustic waves
in materials of arbitrary anisotropy and piezoelectricity
[301] as well as the sensitivity of bulk waves to the
temperature effect E302]. The numerical calculations of
the anisotropy of electric-field control of the velocity
of bulk acoustic waves have been reported in piezoelectrics
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having a sillenite structure [303]. The properties of bulk
and surface acoustic waves have been considered in piezo-
electric crystals with both intrinsic and induced non-
linearities. The nonlinear propagation of a finite
amplitude wave and the propagation of a small amplitude
wave have been treated in a strained piezoelectric crystal
[304]. By choice of crystal cut and wave propagation
direction, bulk waves may propagate nearly parallel to the
crystal surface; these waves have been termed as shallow
bulk acoustic waves or as surface skimming bulk waves.
Research progress and prospects can be found in a notable
article [305]. Theoretical results have been reported for
certain piezoelectric crystals; propagation characteristics
are civen on the reflection of surface skimming bulk waves
[3061 as are experimental results for nonlinear interac-
tions when bulk acoustic waves reflect off the boundary of a niezo-
crystal in a layered structure . Other analytical and e::ierir:-ental
contributions have been reported [308-313].
SURFACE ACOUSTIC WAVES. Surface sound (acoustic) waves in
solids have wide applications in piezoindustry; hence,
they have been thoroughly investigated both theoretically
and experimentally [7-19,276,280-283]. An analysis of

excitation of surface waves with piezoelectric layers has

been presented [314,315]. The relations between the
energy flux, group and phase velocities of surface
acoustic waves in an arbitrary semi-infinite piezoelectric
medium have been established for various types of boundary

conditions; they have also been established for Stoneley
waves in piezoelectric bicrystals [316]. The energy
fluxes along the boundary in the reflection of a transverse
plane wave have been examined [317]. The dispersion curves

of straight-crested wave propagating in a ST-cut quartz
plate have been obtained by use of the equations of piezo-

electric crystal plates due to Lee et al. [109]; the

agreement has been very close between the theoretical
prediction and the experimental results [318]. The scat-

tering of acoustic waves by transverse and longitudinal
modes has been elucidated in a piezoelectric half-space
[319]. In addition, the scattering of surface waves has
been consistently dealt with, as has the interaction
between surface waves in piezoelectric media and electrode

structures [320]. The carrier drift has been shown to

exert a significant influence on the scattering of a

transverse wave by a cylindrical cavity in a hexagonal

piezoelectric [321]. Also, an approximate method of

analysis [322] and a variational analysis [323] have been
introduced in studying the scattering properties of

surface acoustic waves. A quantitative determination of
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diffract ton effects has been made in surface accoustic
wave harmonic generation [324]. Moreover, the reflection
of a transverse wave from the surface of a hexagonal piezo-
electric crystal has been considered and the effect of
piezomoduli variations on the reflection phase shift has
been examined [3251. The specific characteristics oI the
reflection of a transverse wave have been discussed at a
piezoelectric-semiconductor interface under acoustic
bonding conditions L326]. A variational analysis of the
reflection of surface waves by arrays of reflecting grooves
has been presented [327].

Viktorov and Pyatakov [328] have dealt with the main
specific features of surface acoustic waves on cylindrical
surfaces of piezoelectric crystals, including the influence
of surface curvature, crystal anisotropy, piezoelectric
effect and conductivity of cylinder material. Detailed
computational results have been reported for the viscous
attenuation and velocity of surface acoustic waves prop-
agating along various directions in selected orientations
of qUaLtz [329]. An analysis of thermal effects has been
carried out for the propagation characteristics of surface
acoustic waves [330-332]. On the other hand, the interac-
tion between surface electrodes and piezoelectric crystals,
a tonic of importance for various surface wave devices,
has been investigated [333-342]. Longitudinal and transverse
acoustoelectric effects have been discussed in a layered
semiconductor-piezoelectric structure [335]. In a series
of papers, V'yun [336-340] has dealt with ýhe acousto-
electric interaction of surface acoustic waves in layered
piezcelectric-semiconductor structures. He has developed
an impedance method in studying the acoustoelectric
interaction with weak electromechanical coupling [336],
considered the intrinsic nonlinear interaction of surface
waves [339] and reported the characteristic properties
of the hysteresis of acoustoelectric interaction [340]. In
addition, a variatior al approach has been used to analyze
the parameters that describe the interaction of surface
acoustic waves with short-circuited metal strip gratings
L341]. A coonled amplitude equation has been developed
that has been applied to interactions arising from the
weak.k nonlinearities of materials supporting surface
acoustic waves [342]2. Alippi [343] has studied qualita-
tivelv the effects associated with nonlinear acoustic
propagation in piezoelectric crystals with special
reference to the case of surface acoustic waves. He
performed experiments on the effects. A treatment of
second harmonic generation of surface waves in piezoelectric
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solids[344] has been presented by use of the nonlinear
electroelastic equations [345] . Analytical expressions have
been derived foil the velocity and attenuation of surface
acoustic waves in layered structure [346], and a compact
formulation of these waves has been given by extending the
surface Green function matching analysis [347]. The gener-
alized Green's function has been used in the analysis of
surface waves [313]. A numerical method of computation
has been described for acoustic wave generation L348] and
acoustic wave properties [349].

In the presence of induced nonlinearity in piezoelectric
media, the velocity of surface acoustic waves is dependent
upon the nature of biasing stresses and strains and mode
of wave propagation. The nonlinear properties of surface
acoustic waves have been discussed; in particular, the
harmonic generation and the amplitude shift have been
examined as a function of propagation direction 7304]. The
temperature and stress induced effects on the propagation
characteristics of surface elastic waves have been investi-
gated [302,350-3561, as has the influence of intrinsic
stresses [353,354]. Sinha et al. [355,356] have described
some analytical and experimental results on the stress and
temperature induced effects on the surface wave propagation
in crystalline quartz. The propagation of surface
acoustic waves has been experimentally studied in ion-
implanted lithium niobate [357-359] , as has the influence of
a biasing electric field on the propagation [360,361].

BLEUSTEIN-GULYAEV VEAVS. This type of surface waves has no
counterpart in a purely elastic material; it is a face-
shear type of elastic waves that arise at the free surface
of a piezoelectric crystal. The dispersion relation of
Bleustein-Gulyaev waves has been investigated along symmetry
directions of surfaces and interfaces, either metalized or
non-metalized, of piezoelectric cubic crystals. It has
been shown that no Bleustein-Gulyaev waves can exist along
certain direction of a surface [362]. The propagation
characteristics of waves have been studied in a piezoelec-
tric crystal [363] as well as its nonlinear constitutive
relations [364]. Kudryavtsev and Parton [65] have dealt
with the excitation of Bleustein-Gulyaev shear surface
acoustic waves by two ribbon electrodes of finite length
and determined the characteristics of these waves. The
effect of reflection and transmission of a Bleustein-
Gulyaev wave has been studied theoretically [366]. This
effect has been also investigated experimentally [367].
The surface and bulk waves with emphasis on a Bleustein-
Gulyaev wave have been considered in elastic semiconductors
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in a b ias electric field L3 6 ,369]. The scattering of waves
has been examined analytically in normal incidence on an
ideally conducting strip on the surface of a hexagonal
crystal [370]• The scattering at the edge of a metal film,
gaps of various width, a wide electrode, and the rectangular
end of an acoustic line have been studied [371] Additional
contributions on waves have been made by Lyumibov [372],
who dealt with the conditions of existence and dispersion
of elastic surface waves due to the piezoelectric effect in
a free, infinite crystal plate. The generation of a
Bleustein-Gulyaev wave has been treated in oblique incidence
of a shear bulk wave on the nonhomogeneous boundary of a
pie7celectric half-space [373j. Leaky or pseudo-surface
Bleustein-Gulyaev and Bleustein-Gulyaev waves have also
been described in detail [374,375].

RAYLEIGH AND LOVE WAVES. Rayleigh wave is a mode of
acoustic wave propagation that may exist at the free
surface of an elastic half-space, while Love wave propa-
gates between the interface of a thin layer and an elastic
half-space. Chenghao and Dongpei [376] have recently
dealt with the scattering of Rayleigh wave through a groove
on the surface of a piezoelectric crystal; they also
analyzed the scattered field by the boundary perturbation
method. Approximate dispersion relations for Rayleigh and
Love waves have been obtained in an elastic half-space
with a thin piezoelectric film [377]. The generation of
the second harmonic of a Rayleigh wave has been investigated
in a layered structure [378]. A theoretical analysis of
shear horizontal surface Love waves has been performed on
rotated Y-cut quartz crystal 13741 and on an isotropic
substrate with a piezoelectric layer [379]. The dispersion
equation has been derived and analyzed for surface Love
waves propagating in a semi-infinite piezoelectric substrate
on which an isotropic solid dielectric layer has been
deposited [380]. The propagation characteristics of Love
waves in a periodically-layered structure have been
investigated [381]; thegrowth rates of waves depend on
nonlinearly on the number of periods in the structure. The
intlueiicc uf such parameters as a biasing electric field
and a temperature increment has been considered on the
propagation of transverse Love surface waves [382]. Morocha
[383] has studied the propagation of pure transverse waves
along an interface between two piezoelectric media; he also
dealt with the propagation of gap waves in an asymmetrical
parallel-plate waveguide.



20

STONELEY AND LAMB WAVES. Stoneley waves propagate at a
plane interface between two perfectly bonded, elastic half-
space and Lamb waves propagate in thin layers. The
fundamental characteristics of a Stoneley surface acoustic
wave generated by an electrode transducer have been calcula-
teJ at the interface of a piezoelectric and nonconducting
liquid [384]. The effect of piezoelectric moduli and that
of electrical boundary conditions have been investigated on
the existence, velocity and kinematic properties of Stoneley
waves at the interface of two oiezoelectric media r 3 8 5 *
A4ler 376t hý _felat with the elctromemhanical coucling
no Laino modes in piezoelectric plat' _..
Lamb waves has been examined in a planar layer made o:
piezolectrics of hexagonal syngony 7387].

ENEVRGv TRAPPING. Due to its excellent features, the concept
of energy trapping has been increasingly utilized in the
design of piezoelectric devices. Milsom and his znlleacui:
F336.1 have developed a 7t-r-e-d- -r- - -

theory of miezoelectri: dated bars, including both the mass
loadlin and olctrical shorting effects of the electrodes;
the results were in good agreement with experiments. They
also found that energy trapping varies with the cross-
sectional aspect ratio of the bar. An analysis has been
made _f a piezoelectric plate driven into thickness-
extensional trapped energy vibrations by the application of
a voltage to strip electrodes and radiating into an adjacent
fluid [389]. All previous treatments ignored radiation
into the surrounding fluid. Tiersten and his co-workers
have considered various aspects of energy trapping [389-
394]. They dealt with the transient thermally-induced
frecuency excursions at AT-cut and SC-cut quartz crystal
-, 31 , analyzed thickness-extensional trapped energy modes
in a thin piezoelectric film on silicon structure F3911, and
studied the chanqe in orientation of a zero-temperature
-ontoured SC-cut quartz crystal with the radius of the

contour [392]. A simple theoretical model of trapped
energy resonator, wiýh -i,-uIar electrodes 'hat 41

monoclinic crystal rlates ha:• r2's:,n iy L 'ten proposed for
thickness-wave solutions in the vicinity of cutoff frequen-
cies [395], as has a model with rectangular electrodes
for analyzing the effets of tab electrodes on an AT-cut
plate L396]. A simple method has been provided for
predicting frequencies of energy trapped modes of thickness
vib"~wra z in piezoelectric rectangular and circular plates

[3971 Peach -398] has 8etermined the design characteristcs
of A--cut and SC-cut uuartz crystal trapped energy reso-

-ry a variatiuonal m.etho]. Recently, Detaint et al. 13991
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addressed to V t a:. r.
avI to: <:5

.tC� .�0.

B \A�tRL AND FATIGVU

Anov�ical investigations concerning the strer4 n fail�r'u
o piezoelectric materials are of recent ori�in, an�, in
� began with the discovery and manufactur� n� o� miezo-
C r inure. Among investigations on the use o� m�' �s of
��troe1asticity, Parton and Kudrvavtsev r4r j
c� �ibed the fracture of thermopiezoelectric ma�r �is, taco
s -� t�'� crack crowth of arbitrary fern, and have

�Lm�med the conortion of crack propagation ip cr�rrain
� A method has been proposed for deterninunc t

�on>cate mechanical and electrical fields in a piezorl no
me�1um weakened by a curvilinear tunnel cut, incln� g �
��'e�ical examole [4cl�. The intensity factoro -. �ical

ecmanacal quar.tities have been calc'>tam for t
in ip�Air�1 &n�r of a piezoelectric z<dium with a
notch [4o2 . Ken 'menko, Pisarenko and Chushko [4o� h�
mrec�cted the fatigue life (endurance) of
�i�nt5 from the characteristics of a subcr�ia�
orowth; the lower bound of endurance giver, by the no �
acrees well with the measured data. Development of
ororocracks has been considered in a piezoceranic ha 1 f ml �e
with two boundary electrodes [404]. Further, Parron i�Q
nas contributed on the sebject as au extension or nr�

[406]. Purely experimental studies hav� b�n
ciloected toward the de�r�-'ination of the fracture to nhn �
�' 0 7
- 403] and fatigue failure [409] of pi�7oceramIr

6- METhODS OF NUMERICAL SOLUTIONS

Among the methods of numerical analysis in contineum physics,
the finite element and boundary element methods have long
neon u�'d fo�- solutions of elastodynamic problems. The
literature in this area has grown enormously since the
evolc2tion of digital computers. However, only in the last
few years, the finite element method began to be used to
solve dynamic problems of piezoelectric crystals. Allik
and Hughes [410] and Oden and Kelley [411] have described

3 3
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the finite element method as a universal numerical method
of piezoelectric analysis. Using the finite element method
Naillon and his coleagues [412,413] have thoroughly described
an analysis of piezoelectric structures, including some
applications. Kovalev and his colleagues [414] have
introduced an approximate method of numerical solutions for
problems of electroelasticity on the basis of variational-
difference methods, of which the finite element method is a
modification. The finite element method has also been used
to calculate the linear and nonlinear propagation modes in
a piezoelectric surface wave guide [415,416]. A numerical
approach based on the finite element method has been
described for the analysis of periodic waveguides for
acoustic waves and, in particular, of propagation character-
istics of SH surface waves and Rayleigh waves [417]. The
vibrations of piezoelectric bar have been simulated by
use of a finite element method [418]. Xiaoqi and Quichang
[419] have developed a finite element-equivalent circuit
method to compute the vibration and acoustic radiation of
a piezoelEctric composite rod. The dynamic influence on
the flexible cantilever beam with distributed active piezo-
electric damper has been considered by the finite element
methou [420]. Besides, a staircase model has been presented
for the analysis ,f a tapered piezoelectric bar [421]; the
theoretical and experimental results have been reported.
Again, using the finite element method, the vibrational
mode spectrum in an axisymmetric piezoelectric disk has
been characterized [422,423]. Karnaukhov and Kozlov E424]
have described the method for an investigation of the
electromechanical behavior of thermo-electro-viscoelastic
solids of revolution under harmonic loading. They have
also performed numerical calculations for a piezoceramic
viscoelastic cylinder with radial polarization. Moreover,
the addition of piezoelectric properties to structural
finite element programs has been achieved by matrix
manipulations [425,426]. The finite element method has
been reviewed for electroelastic vibration and static
analyses of piezoelectric structural elements [427].

The method of Laplace transforms, the method of z-transforms
and the method of fast Fourier transforms [428-431] have
been applied to solutions of dynamic problems of piezo-
electric crystals. By the method of Laplace transforms,
Zhang and his colleagues [432] have obtained the complete
analyt ic solutions of the transient behavior of a trans-
mitting thickness-mode piezoelectric infinite plate. They
gave the physical interpretations of complete solutions as
well. By the method of z-transforms, rapid solutions have
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been proposed to the transient response of piezoelectric
elements [433]. By the method of fast Fourier transforms,
the transient response of a piezoelectric cylinder [1932
and sphere [434] has been treated. Polak et al. [43
have discussed mathematical and computational aspects of
device modelling that may be applied to the analysis of
piezoelectric elements.

The boundary element method has been described for solutions
of piezoelectric problems [436], although specific problems
remain to be solved. The finite element method has been
applied to electric and magnetic field problems, including
a number of applications [437]. A brief account of recent
algorithms has been given for electromagnetic computation
in two and three dimensions and at low frequencies [438];
this and the finite element method can be readily extended
for solutions of some dynamic problems of piezoelectric
crystals.

7. CONCLUSIONS

The aim of this paper is to review the open literature
related to the dynamic applications of piezoelectric crystals
since 1983. Representative work, both theoretical and
experimental, has been surveyed that deal with vibrations
of rods, plates, disks, shells and laminae; with bulk waves,
surface acoustic waves, energy trapping, fatigue and
fracture; and with methods of numerical solutions. This
review should be of value to readers seeking guidance; it
also provides a challenge to interdisciplinary researchers
in the field of piezoelectricity.

As is apparent from the representative literature cited, a
considerable amount of valuable works has been done on
waves and vibrations in piezoelectric crystals. However,
most of works has been devoted to analytical solutions of
specific problems using conventional numerical methods;
little of this analytical work has experimental corrobora-
tion ; very little work relates only to experiments and
basic research. Analytical and experimental works, including
applications, that deserve special attention have to do with
polar and nonlocal piezoelectric materials and piezoelectric
powders and alike [439]. Efforts are needed to develop a
relativistic and stochastic approach to dynamic problems
of as well as to the thermodynamics and stability of
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piezoelectric crystals [440-442]. Investigations are
anticipated to address more challenging problems of
inelastic and nonlinear behavior, fracture, reliability and
endurance of piezoceramics. Moreover, due to their computa-
tional efficiency, the finite element method has to be
applied extensively to dynamic problems of piezoelectric
crystals, as has the boundary element method evan though
no specific applications are yet available. Lastly, there
still exists a need for experimental works to determine
some constitutional behavior and sensivity of piezoelectric
materials and to corroborate theoretical results. In wiew
of its current trend in technology, opportunities appear to
be plentiful and potentially fruitful for future work on the
subject.

This is an extended version of the recent survey paper [4431
with an updated bibliography.
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CHAPTER 2
CERTAIN INTEGRAL AND DIFFERENTIAL TYPES OF

VARIATIONAL PRINCIPLES IN NONLINEAR PIEZOELECTRICITY

ABSTFACT

Various forms of variational principles are developed so as
to generate, as Euler-Lagrange equations, the fundamental
differential equations of nonlinear piezoelectricity. To
begin with, Hamilton's principle is rigorously applied to
the motion of an electroelastic solid with small piezoelec-
tric coupling, and an associated variational principle is
readily derived. This two-field variational principle
yields some of the fundamental equations of the piezoelec-
tr-7 solid, and it contains the remaining fundamental
equations as its constraints. Then, by use of the disloca-
tion potentials and Lagrange undetermined multipliers
(Friedrichs's transformation), the variational principle
is augmented for the motion of piezoelectric solid region
wuith an internal surface of discontinuity. Likewise, to
incorporate the constraints into the two-field variational
principle, Friedrichs's transformation is again applied,
and hence a unified variational principle is shown to pro-
duce the fundamental equations of electroelastic solid with
scall piezoelectric coupling. Further, similar variational
principles are formulated for the incremental motion of
piez-electric solid that is initially under stress.

"- IXTRODUCTION

In Describing the physical behavior of piezoelectric solid
media, the elastic field is taken to be dynamic and the
electric field to be static, and both the fields are con-
sidered to be linear with respect to electromagnetic prop-
agation phenomena. This linear quasi-static approximation
provides an extremely accurate description of the propaga-
tion of small-amplitude waves in, and the small vibrations
of, the solid media. However, the linear approximation
becomes inadequate in high amplitudes, and hence should be
taken into account the intrinsic nonlinearity and/or the
induced nonlinearity due to the peculiarity and the defor-
matiun of solid media, respectively. In fact, the nonlinear
phenomena were already demonstrated experimentally and
investigated analytically for some dynamic problems of
pLezoelectric solids and especially quartz crystals ([DI,
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[2], and references therein). In quartz, which is probably
the most widely used crystal, the electromechanical coupling,
that is, the piezoelectric effect is weak, and hence, the
electrical behavior is taken to be linear while all the elastic
nonlinearities are included. On the other hand, the presence of initial
stresses may significantly affect the dynamic characteristics of quartz
crystals, and accordingly the linear approximation should be modified
[3]. In this study, various forms of variational principles
are derived for the motion of an electroelastic solid with
small piezoelectric coupling (e.g., quartz) and that of a
piezoelectric solid subjected to initial stresses.

The governing equations for the motion of piezoelectric
solid are constructed on the basis of the general principles
of electroelasticity. They consist of the divergence (field)
equations, the constitutive relations, the gradient equations
and the appropriate boundary and initial conditions. Of
these fundamental equations, the field equations are origi-
nally 3tated in global form through the integral expressions
of mechanical and electrical balance laws. The global field
equations are essential and general due to their physical
nature, and their local (differential) counterparts can be
stated under some regularity and local differentiability
conditions. The constitutive relations appropriately express
the peculiarities of piezoelectric solid, and they are, in
general, stated in differential form under certain rules and
invariant requirements. However, these relations should be
stated in integral (global) form for the case of a nonlocal
piezoelectric solid in which the nature of long-raxge inter-
molecular forces is taken into account. The rest of the
fundamental equations are always given in differential form.

3esides their global and local forms, the fundamental equa-
tions of piezoelectric solid can be alternatively expressed
in variational form by means of the stationarity of appro-
priate functionals. In stating the fundamental equations,
all the three forms are, of course, equivalent, and interde-
pendent, and they can be deduced from one another. From the
standpoint of computation, the global form is inappropriate,
the differential form is widely used in analyzing the motion
of piezoelectric solid, and the variational form has certain
advantages over the others. In the latter form, the funda-
mental equations are generated as the Euler-Lagrange equa-
tions of variational principles which may be contrived in
certain cases. In order to derive a variational principle,
a general principle of physics (e.g., Hamilton's principle
and the principle of virtual work) is often taken as a
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starting point in lieu of experienced quesswork. Of varia-
tional principles, an integral variational principle (e.g.,
Hamilton's principle) admits an explicit functional, whereas
a differential variational principle (e.g., D'Alembert
principle) denies it. Even Hamilton's principle becomes a
differential variational principle for the case when the
nonconservative forces do exist. On the other hand, the
principle of virtual work and the like, by definition, cannot
have explicit functionals due to their postulated statements
in terms of infinitesimals called virtual displacements and
virtual work. The differential variational principles are
especially valuable from the standpoint of succintly
summarizing the fundamental equations, deducing lower order
field equations and obtaining approximate direct solutions.
In addition to these features, the integral variational
principles are useful in finding bounds formulae and in
studying existence and convergence proofs of solutions. In
closing, the differential variational principles can be
contrived almost in all cases, whereas the integral varia-
tional principles are generally applicable to the linear and
self-adjoint fundamental equations, and their existence can
be tested by use of Frechet derivatives [4], [5].

In deriving variational principles, Hamilton's principle [6],
[7], which was originally derived for a discrete mechanical
system and later extended by Kirchhoff [8] to a continuum,
was used successfully in dynamics, solid and fluid mechanics,
anc piezoelectricity. The application of this principle to
a continuous medium always leads to a variational principle
that generates only the field equations and the associated
natural boundary conditions, and hence it implements the
remaining fundamental equations of a medium as its con-
straints. The constraint(subsidiary) conditions make diffi-
cult a free and simple choice of approximating (trial or
coordinate) functions in computation, and accordingly, in
many instances, it is desirable to remove them. There exists
a number of ways for the inclusion of constraint conditions
into the variational principle, and a simple way of imple-
rmenting is to use Friedrichs's transformation [9]-[11].
Other noteworthy ways to be used for the removal of con-
straint- are the adjoint equation method or the method of the
mirror equation advocated by Morse and Feschbach [12] in
continuum physics, the quasi-variational method of Biot
[13] in thermodynamics, the restricted variational method
or the method of local potential put forward by Rosen [14],
and Glansdorff and Prigogine 15j, and the method of
convolution due to Gurtin [16] in elasticity. Among those,
Friedrichs's transformation is applicable to holonomic as
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well as nonholonomic conditions as shown by Lanczos ill],
and it is particularly valuable and of wide use in removing
constraints in both elasticity and electroelasticity (e.g.,
[17]-[19]). In fact, due to its versatility and clarity in
application, Friedrichs's transformation is also used herein
in modifying Hamilton's principle into the unified varia-
tional principles of nonlinear piezoelectricity.

In piezoelectricity, Tiersten and Mindlin [20] , Tiersten [21]
[22], EerNisse ,23 [24] and Holland and EerNisse [25]-[27]
primarily developed certain variational principles that were
elaborated in [22], [28]. Starting with Hamilton's princi-
ple, Tiersten [21] derived a two-field variational principle,
and then he modified it through Lagrange undetermined multi-
pliers in order to obtain an extended variational principle.
This variational principle yields, as its Euler-Lagrange
equations, the field equations and the associated boundary
conditions as well as the pertinent jump conditions for a
piezoelectric bounded region containing an internal surface
of discontinuity. Also, Vekovishcheva [29] established, by
experienced guesswork, a few variational principles in the
theory of electroelasticity, as did the author [30],F31].
Especially, the initial and jump conditions were excluded
in [29],[31], and these conditions were taken into account
by the author [32] who was guided by the work [18]. The
variational principles in [32] generate all the fundamental
equations of piezoelectricity, analogous to the variational
principles of Hu-Washizu and Hellinger-Prange-Reissner [33]
in elasticity. Further, in the light of Gurtin's method of
convolution [34], another variational principle with no
constraints was formulated by Sandhu and Pister [35].

To include thermal effect, Mindlin [36] discussed a varia-
tional principle in thermopiezoelectricity by extending
Siot's [37]variational principle for the thermoelastic case.
•owacki [38] and recently Chandrasekharaiah [39] formulated
some variational principles with constraints through
Hamilton's principle. The unconstrained variational princi-
ples were derived by the author [40]-F42] who followed both
the methodology described in [8] and [34J. More,-ver,
Kudriavtsev, Parton, and Rakitin [43] established a condition
that was the generalization of the fracture variational
principle in piezoelectric solids, as did Parton [44] and
the author [45]. Lastly, mention should be made of the
variational principles for a piezoelectric solid under ini-
tial stresses [46], [47] and those for an electroelastic solid
with sriall piezoelectric coupling [48], [49]. These varia-
tional principles were obtained by use of either Hamilton's
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:-ple or the principle of virtual work together with
>:-u='ichs's transformation. As regards the relevant

_ire ure on variational principles in pio- oelectricity,
.ader uav be referred to the list of references in L21

- 141].

- t follows, the fundamental equations are recorded for
<linear electroelastic solid with small piezoelectric
<: ng in the next section. Hamilton's principle is stated

" .e nonlinear electroelastic solid, and then by perform-
suitable variations and integrations by parts, a two-

: variational principle is derived that yields the field
•_.ý.- ons and the associated natural boundary conditions,

i z-tion 3 Bv use of the dislocation potentials and
ge undetermined multipliers, Hamilton's principle is

ied in Section 4 , and hence an extended variational
.le is established for the electroelastic region with

- ernal surface of discontinuity. The two-field vari-
1 principli of Section 3 is similarly augmented

-to - Friedrichs's transformation and a unified varia-
Sprinciple if obtained in Section 5. This variational

- - --ple is showi to generate the fundamental equations
: inear elec roelastic solids. Moreover, by comparing

- v nciples dcrived, some variational principles are
_2d for a p ezoelectric solid subjected to initial

-- :es, in Secton 6 The last section is devoted to
I cazssS, co-cluding remarks and further needs of

- tthrcug ut the paper, the usual indicial notation
-- e 3e` in a three-dimensional (3-D) Euclidean space

tnis space, the x.- system is identified with a fixed,

" " 3-hned svst •m of Cartesian convected (intrinsic)
-nares. Eifltein's summation convention is implied over

.- oated Lati. indices, unless they are put within
•-- ess. A c,'mma stands for partial differentiation

.-- scect to t-e indicated space coordinate and a super-
-dot for tin, differentiation. Also, an asterisk

-s nrescribej qouantities, and a boldface bracket indi-
the ju-o of an enclosed quantity across a surface of
i: nilnuity. The symbol B(t) refers to a regular, finite

S I: nded region B contained in E at time t, B denotes the
of the region B with its boundary surface 3B, and

- =resents the Cartesian product of the region B and
1 intera] 'rT=[t 0 t I'). As regards new quantities,

-"re essentially deined whenever they first appear.

-A
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2 - SU:MM1ARY OF NONLINEAR PIEZOELECTRIC EQUATIONS

In this section, the fundamental nonlinear equations of
an electroelastic solid with small piezoelectric coupling
are stated in differential form. In accordance with the
small piezoelectric coupling, the nonlinear elastic terms
are included only, and the electric and electroelastic terms
are kept linear. The fundamental equations were derived
in [1], [50], [51], and they are expressed herein for
completeness and convenience.

In the space E, let B+ýB stand for an arbitrary, simply-
connected, finite and bounded region of the electroelastic
solid [52], and also let the region B be referred to by a
fixed, right-handed system of Cartesian convected coordi-
nates x.. The entire boundary surface 3B of B consists of
the complementary regular subsurfaces (3Bt,B u) or (ZB ,B )
and tne unit outward vector normal to ýB is denoteA
by n.. Further, let BXT represent the domain of definitilons
for -the functions (xit).

Now, the 3-D fundamental equations are recorded as the
following divergence equations:

t.. 'a. in EXT (la)13 ,i 3

t.. i..-T +u. (lb)
i] ij ] 1 3k J,

e. .T j = 0 in 3XT (ic)-i> jk

D. 0 in BXT (2)

with the definitions

t.. asymmetric Lagrangian stress tensor

T.. symmetric Kirchhoff stress tensor1]

T i=ikUj k symmetric -axwell electrostatic stress
ij tensor

density of the undeformed body

a. Lagrangian acceleration vector (=.i)

!_. mechanical displacement vector

tKronecker delta
ij

D. electric displacement vector1

e..k permutation symbol.

13?
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Uouation (1) stands for the nonlinear stress equations of
motion and (2) for the linear chargce equation of electro-
statics.

Gralient equations:

Sij =/2(u + Uj,i+uk,iUk,j) in BXT (3a)

S1 =eij+1/2j(eki+Wki)(ekj-Wkj (3b)

e ij=1/2(u. ,j .uj,i.),wij I=/2(ui,j-uj. i) (3c)

and

E =- •, in BXT ()

with the definitions

S.. Lazrangian strain tensor

e_ linear strain tensor

rotation tensorii

electric potential

c.uasi-static electric field vector1

Ecuation (3) represents the nonlinear strain-mechanical
tisoa-•m f reiations and 5(4) the linear electric field-
le r otential relations.

3onstitutive equations:

:1/ ( + in BXT (5)1]I ,S . S ..iJJ .

D i -E in 3XT (6)
1

h I -E.D. is electric enthalpy; and U is potential
energy densIty. A quartic form of the electric enthalpy is
recorded in the form.
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H=1/2CijklSijSkl-i /2CijEiEj -Cijk EkSij

+ 1/6C.. S S S13ijklmn i kl Imn
+ 1/24C.ijklmnrs S S S mnSrs (7)

where Cijkl' Cijklmn' Cijklmnr are second-order, third-

order, and fourth-order elastic constants; respectively,
Cijk is piezoelectric strain constants; and Cij is

dielectric permittivity.

Of these constants, the elastic constants refer to free
constants since they describe the strain-stress relations
when the electric field is absent, while the remaining
constants refer to clamped constants E53]. Further, the
usual symmetry nelations hold for the material constants,
namely,

C =0 =~ ,-Ci= ,.=.
Cijkl Cjikl Cklij' ijk= Cikj' Ci]:C31

C. C. =0C. =0C..Cijklmnn Cijmnkl Cklijmn ]iklmn (8)

lijklmnrs klijmnrs mnijklrs rsijklmn jiklmnrs

In view of (5)-(7), the constitutive equations for the
symmetric stress tensor and the electric displacement vector
are expressed in respective forms:

Tij CijkSkl-Cijkk+I/2 C ijklmn Skl Smn

+ 1/6 Cijklmnrs Skl Smn Srs

i ijkS jk .Eijj in BXT (9)

Boundary conditions:

t*-n.t..=ti - njT +U )=0 on ýB XT (10)
I j ]1 1 ]]k ik i,k t

u.-u* -0 on 3B XT (11)

o*-n.D.=0 on ýB XT (12)

on 3B XT (13)
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where t.= n.t., is the stress vector; n. is the unit outward

vector normal to ýB; and ai=niD.i is the surface charge;
where the stresses are taken to be prescribed on ýBt, the
mechanical displacements on DBu, the surface charge on
3B and the electric potential on 9D

Initial conditions:

1i 0 1 ' in B(t 0 ) (14)
ui(xjft0) Wl(Xj)=:0

and

S(xi,t 0 )-y*(xi)=O in B(t 0 ) (15)

Jump conditions:

1,i~tij]='ýi[Tik('jk,+Uj k)]+ta.=0 on SXT [ui] =0 (16)

and

i [Di: 1=0 on SXT (17)

;ier t• is the applied prescribed surface traction; Q is
the electric surface charge density; S is the material sur-
face of discontinuity. In these equations, the surface
traction and charae density with zero intensity are consid-
ered, that is, tI=Q=O, the conventional notation [xi] for
(<i-x.) is introduced, and also vi denotes the unit normal
vector directed from the (-) to the (+) side of S.

Equations (i)-(15) completely describe the nonlinear behavior
of nonlocal, nonpolar, and nonrelativistic elecroelastic
solid with small piezoelectric coupling, and (16) and (17)
arise at a material surface of discontinuity. The existence
conditions have yet to be established in solutions of the
initial mixed boundary value problems defined by the funda-
mental equations (l)-(15). Nevertheless, the boundary and
initial conditions (10)-(15) were shown to be sufficient for
the uniqueness in solutions of the fully linearized problems
of fundamental equations [22].
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3- THE APPLICATION OF HAMILTON'S PRINCIPLE TO TIlE
ELECTROELASTIC SOLID

In piezoelectricity, Hamilton's principle was rigorously
expressed, and then the associated linear variational prin-
ciples were readily deduced from it in [22]. The treatment
was restricted only to the nonrelativistic case, and also
the polar as well as nonlocal effects were excluded.
Likewise, this principle is now applied and an associated
variational principle is derived for an electroelastic solid
with small piezoelectric coupling.

Hamilton's principle states that the action integral is
stationary between two instants of time to and ti, namely

T •JTLdt+ IT 6Wdt=0 (18)

where L is the Lagrangian function and 6W is the virtual
work done by external mechanical and electrical forces
for all the admissi'le motions of electroelastic solid,
that is, the motions which are compatible with their given
constraint conditions and of which the end points are taken
to be coterminus with those of the actual motion. In (18),
the Lagrangian function is defined by

L =!E[K-H(Sij,Ei)]dV (19)

for the regular region of electroelastic solid B+±B with
its entire boundary surface 3B, and the kinetic energy
density K is expressed by

I> 1/2 pu.L . (20)

and the electric enthalpy by (5)-(7). The virtual work per
unit area done by the prescribed surface tractions tt and
surface charge a* is given by 2

W•'J• (t*5ui+G*5r)dS (21)

After inserting (19)-(21) into (13), one arrives at the
variational equation of the form

I• IT 5f B [1/26uiu6i- H(Sij,Ei)]dv

+1 (t*6ui+U*ý,O)dS dt=0 (22)9B i 1
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wjhere all variations vanish at t=t 0 and t=t 1 . Then, by
carrying out the indicated variations, utilizing the fact
that the operation of variation commutes with that of differ-
entiation and integrating by partswith respect to time, this
equation takes the form

ý4= fT dt .' (-Pai~ui-Tij6Sij+mi6Ei)dV

+ dt"3 (t*65u +*6f)dS=0 (23)

Here, the variations are assumed to obey the axiom of
conservation of mass, namely,

6(pdV) =0 (24)

and the constraint conditions on them, the constitutive
equations (5) and (6) are employed, and the symmetry of
"IKirchhoff stress tensor is considered. Now, by substituting
the nonlinear strain-mechanical displacement relations (3)
and the linear electric field-electric potential relations
(4) into (23) and applying the divergence theorem for the
rezular region D+93, and then combining terms in the surface
anJ volume integrals, one finally obtains a two-field varia-
tional principle as

3( I' A I .Tdtf (Llj uj+L2 6)dV

+ Jrdtr (L* 6u +L*ý )-=0 (25a)
T 33 13 3 2'

with the admissible state A 1 ui.,t: and the definitions

L =j:[ ik k+Uj,k) ) ,i-saj (25b)

L =D. (25c)
2 i,i

L*.=t*-n. . +uj . (25d)
l3j 1 'ilk jk ~

L* =i ( - i i (25e)
2 i

In deriving this variational principle, tnhe condition

3u = 5 s0 (26)1

in £(to).and 7(t1 ) is imposed. In the variational principle
(2,), since the variations 6u. and 6.•of the admissibleI ]-
state are arbitrary and independent inside the volume B
and on ýhe boundary surface 3B, one has the nonlinear stress
equations of motion (1), the linear charge equation of
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electrostatics (2) and the natural boundary conditions (10)-
(13). Conversely, if these equations are met, the varia-
tional principle (25) is evidently satisfied. The admissible
state A1 of (25) is subjected to the remaining fundamental
equations of electroelastic solid and the condition (25) as
its constraints.

The constrained variational principle (26) can be used in
solving approximately the boundary-value problems defined
by the fundamental equations of nonlinear electroelastic
solid, provided that the initial conditions (14) and (15)
may be left out of account by a variety of numerical tech-
niques (e.g., [54],[55]). However, any approximating
solution must satisfy the constraints of (25) ; this feature
of Hacilton's principle was discussed very thoroughly by
Tiersten [18]. Further, it is of interest to note that the
two-field variational principle (25) can be extracted from
the principle of virtual work [49] , and it contains some
of earlier variational principles of [21] , E22] , [252, [30]-
[32], [47] as special cases whe the nonlinear terms are

discarded.

4 - A VARIATIONAL PRINCIPLE FOP, DISCONTINU©US ELECTROELASTIC
FIELDS

Nov., paralleling to the derivation of the t;wo-field vari-
ational principle in the previous section, a variational
principle is deduced from Hamilton's principle for a region
3 of nonlinear electroelastic solid, intersected by a fixed
surface of discontinuity S. This internal surface of
discontinuity splits the bounded and finite region B+3B
with its entire boundary surface 3B, and each region is
labeled by a(a=l, 2 ). The region B. is bounded by the
boundary surface 33 and S, and hence, 3D 2B and
boun ý3 1 V 1 ,2 I n
DI (2 -0. Let the mechanical displacements and the

elcctric rpotential undergo a jump across the discontinuity
surface S. Then applying the global laws of balance pos-
tulated in electroelastodynamics and using the generalized
3reen-Gauss theorem fc a field xi. namely,

i. dV f vi3idS-f V (Xi - S (27)
1,-3 30-S S11 1

one obtains the local balance of laws (1) and (2) and also
the Juvip conditions (16) and (17). Here, the exponent a is
usd to Iesignate the region B 3+ 'Px On the other hand,



U~ th

T * i I i lt n t L l- t;7CI

re 7 10-in 7 u -a1: 1ton, ;)f Tx, vl (1r
OKin h-'- f Cfm

C II L c T ' I

--Iý k-tr e a 1 -4

itc n'ý reailt' Eýn f th'at tnis -- ,,ua 1o

Ij 2

T l

I )( -S C

nh~ orfntic e am ivtI i tn n 5fo c g'-- -

- -" ~ O 1020• a t c,:-,Ofi1

J i tr sa o f c0 22 0

ea Iý! s -o icoL.o a - t- '-
t .- a ti-I:-J.ia1pi i in t e l' , pae l

t CEo "a0a

C- ýI 1 n --, - I e a c- C - -ai 2 a Z-f --

_-r n, e-op at t aI t wcor the:

ut ia ro-itr (2t) jfI h1amilton's principie is il~lpoae&ý.
: 2''ryin',ý ("ut t'-' viriations in a way anologous to those-
;r())z. p~lyin-j h- '0'- rioa i zcc(I Gree-Ga-ass thacrem (27)



78

which is valid only up to and not across the surface of

discontinuity S, (30)takes the form

5*C2= 5 {A 122

+ I dtJ s {[A j+ v iT i(2)( (2) i 6u (2)

T S i i ik jk~uj,kJ

(1) (6 +u(1) ] (1
X j k I'k Iu, k)j°uj

+(X+v ) (2)1

_(x+V.D( 1 ~))• (1)+ i~(2) -u. ))

d(1)) S=0 (32)

e the volumetric and surface variations ýu(. an

are free in the region -, and on the surfaces

oB3 and S, and the variations 6Xi and X are arbitrary on the

discontinuity surface S. Thus, for (32) to be satisfied in

all these admissible variations, the integrand of each vari-

ation must vanish and this gives the ri4-ergence equations

(1) and (2) and the natural boundary conditions (10) and

(12) for each region .+3B. , namely

(a)=L = 0,L_--L*( = ; a=l,2 (33)

lj 2 ,L 1  2

and the jump conditions (16) and (17) at their interface,

and also the conditions of the form

X + + =0 (34)

J 1i~z jk j,k
),+ .D.a):0(35)

i11

By solving (34) and (35) for x. and x , the Lagrange mul-

tipliers are identified as traciions and surface charge in

their ijost appropriate form
2 (a) (a)

= v az= ik jk j,,'

2 -6)
= -1/2 vi D. 

6

Then, the substitution of (36) into (30) results in an aug-

mented variational principle as follows:
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S.2{'t } " dt r c(L( ) ()t)u + L(L. IS+ L ,•• )dV2 2 'T c{-B•-- j

+T dt M{1 uJ• j

+ L 1/2* dS
+ f T d t-rsl1/2Vi [T ik (5jk÷Uj k)1

-ikik Jk j ,

+(2

+ (6ý ( ) j (2 [)(2 (2)

- (6Dl +,<Oi2) [1S }dS=0 (37a)

Tn a compact form, it is

6CJA; c=iýdt •C ('/ 2 (1/2 1• 2 { \ Td 13- CL i i

(CL)
-H ) dV
+" B (* (at) 6U.(a) + * (at) 6¢ h¢))dS]

" "1 i 1 1i

-•'.Tdt sl/2•i{(t (,) +t(2)_U]

DT 1  D 1 2+D ) ) [,-•]
+ (Di ( i+ (2 }[t dS=0 (37b)

with the admissible state
ý (-0) (,:0 t(-Y,) (a) (a)

2: (= ,U ' ,D C)i ( 37c)

which leads to the divergence equations and the natural
boundary conditions for each region and the jump conditions
as its Euler-Lagrange equations. The differential type of
variational principle (37a) and in particular its form (37b)
is very useful for approximation, and also it covers some
of earlier variational principles for the linear case
(e.g., L22],L[411 and references therein). In deriving (37),
the inclusion of the jump conditions through Friedrichs's
transformation is a classical example of implementing
subsidiary conditions in a variational principle[l10,[ll.
However, there is a slight difference between this and the
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classical one, that is, the constraint conditions (16) and
(17) are boundary constraints and Ai and X are functions
on the discontinuity surface, while the constraint conditions
treated in the classical way are either domain orisoperimetric
constraints. Moreover, to introduce a modified Lagrangian
(30) in lieu of the original Lagrangian (28) is also
physically plausible, that is to say, the modification of
the Lagrangian by the dislocation potentials is not merely
a matter of mathematical method but has a very real physical
significance. The modification of the Lagrangian on account
of Friedrichs's transformation represents the Lagrangian
that is responsible for the maintenance of the given con-
straint conditions.

5- VARIATIONAL PRINCIPLES FOR NONLINEAR PIEZOELECTRICITY

In the previous sections, three variational principles (25),
(29), and (37) of nonlinear piezoelectricity are deduced
from Hamilton's principle, and they impose certain con-
straint conditions upon their admissible states. In general,
neither a priori satisfaction of such conditions nor by
introducing additional unknowns in terms of Lagrange
multipliers is desirable in computation. Thus, it is
preferable to use variational principles with as few con-
straints as possible, as sugcýsted by computational economy.
Of the constraints of variFtional principles, the jump
conditions (16) and (17) are already relaxed in (37) with
the help of Friedrichs's transformation. Now, the
constraint conditions of (25) are similarly removed, and
then a unified variational principle is derived for the
motion of an electroelastic solid with small piezoelectric
coupling.

To incorporate its constraint conditions (3)-(6), (11),
and (13) into the two-field variational principle (25),
the dislocation potentials are introduced as follows:

All=JB Aij [S ij-1/2(ui.j.+uji+Uk,iUk,j)]dV (38a)

A22=1 W (Ei+• i)dV (38b)
B i • 1 i

AA=f .Xi(Ui- u .)dS+f 3BýP1ý)dS (38c)
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where \i, \ and p are the Lagrange multipliers to b-
determi d.' The dislocation potentials (38) are added to
(22) with the result

6 3 Tdt! B (I/12i i-I)d

+ r dt f (t.6u+a *p) dS
T 9B 1 i

+,'T. i dt=O (39)

Then, as in (22), all the indicated variations in this
equation are treated, and a variational equation is
obtained in the form

6 3::T dt B[-Pai5ui 1 / 2 ( DH + 9H )6S3 T t [.- as.. ii13 31

3E.B• i iV

+Tdt!?zt.u~ CU dS

1 i

+" d~b{•j [Sij-1/2(ui,j+uj-

+ U, .u )
+ ' , - , - u j

+ i Fs.ij -(iui .+Uki )]} dV

+T r t F(Bu i -ui) .iui]dS

+.T dt: " 3 B-t )+ =dS 0 (40)

By exacly tn sam: -ay as in (23) , the Green-Gauss theorem
is applied, the conditions (24) and (26) are imposed, and
then the terms that belong to a certain variation are
collected. Thus, one finally obtains the fundamental
equations of electroelastic solid and the Lagrange multi-
pliers identified by
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since the volumetric and surface variations o:f Lagra~nge
multipliers and field variables are free in --he rez-ion z
and on the surface portions of its boundary Sz:'rface~.E
substituting (41) into (40) , the unified variatio~nal ini
pie is found in the form

3 . T ,tJ B (L1] j u L 2 1]+ 1]S

+L.ýE.+K. .,T. +K xD.)dV
1 a 1 1D 1] 1 1

T. dt.rB L* 6u dST lj 1
+f dtfr Lt6t.dS

T ýB 11
u

+rdtr L*54,dST B 2

wihthe ad'missibleL state A3z= 'u.,S......

anj th-e dýefinitions (25b)-(25e) and --he dýenotatio-ns as

L.. T. -1/ 2 ('H + 2 a

1 E.

Khý -=(ýra -ina prnil (4)ve4stýef=am:,

O~1~.sof: nonlinear electroelastic soli½, nan-eiy,

1] 1] 1 1

X. ~ * T, L =0 Cn ~BXT,
- 3t 1r

- ID n ~ 0 D, XT (4
2
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as its Euler-Lagrange equations, and it is stated below.

Variational principle: Let B+ýB denote a regular, finite
and bounded region of the space E, with its piecewise
smooth boundary surface 3B(=ýB u j3Bt= 3B0 J 3Be and 3Brl
SBt= 3 Bq U 3 Bt =0) and its closure B(=BU3 B) . Then, of ahl the
admissible states A={ui, Sijij,t ;,, Ei.,Di} , which

satisfy the initial conditions (14) and (15) and the con-
dition (26) as well as the symmetry of stress tensor Ti"

and the usual continuity and differentiability conditioAs of
field variables, if and only if, that admissible state A
that satisfies the nonlinear stress equations of motion (I),
the linear charge equation of electrostatics (2), the
nonlinear strain-mechanical displacement relations (3), the
electric field-electric potential relations (4), the
nonlinear constitutive equations (5) and (6), and the natural
boundary conditions (10)-(13), is determined by the vari-
ational principle

5.C {A I=0 (45)
3 3

of (42) as its appropriate Euler-Lagrange equations.

In view of the virtual work defined in (21), the variational
equation (45) represents a differential type of variational
principle in nonlinear piezoelectricity. However, the
variational principle (45) can be readily written in a
compact form by

tJ ui,_i fT• " ' ti;fEi'c',D.i

, 1S -2'2(u u. +u k u )TdV

B D i(Ei ÷• ,i' d"

u u (u -* dS +.' t* u-dS

t

t*)

2 (46)



84

Here, the functional Z3 does exist and an integral type of
variational principle is indeed supplied as an alternative
description of the fundamental equations of nonlinear
piezoelectricity, and it has, of course, all the fruitful
features of classical variational principles (e.g. [11] and,
in particular, [56], [57] where a lucid discussion of the
search of variational principle was given).

On the other hand, the Legendre transformation K-(Tij' Di)

of the electric enthalpy H(S.*, E.), that is, the com-
plementary electric enthalpy±•ay ýe introduced as

) 1 ( TijDi)= TijSij-Ei]-H (Sij Ei) (47)

for the case when the Hessian of H does not vanish. Then,
inserting (47) into (45) and imposing the relations (3) and
(4), one arrives at another variational principle in the
form

4 {u P ti ; m =0 (48a):4 1] ij ' i

with its Lagrangian

S=Tdt!B E1/2p~iU'i+ )ý( ij'Di)]d-,
4C T d-

- 'Tdt! B /2Tij (u i,j+Uj,i+uk,i+uk,j)dV

- T- t BD dv +1 dtf ti(ui-ui)dS
T 1,1 T 3B 1u

+ Tdt." t u dS
T Bt "

+ . it.'B (-% )dS

+ Tdt! ý dS (48b)

This integral type of variational principle leads to the
nonlinear stress eriuations of motion (1), the linear charge
euation of electrostatics (2), the constitutive equations
in the inverted form

S. =]/2( + E ) in BXT (49)
1] 1] 1

ard the boundary conditions (10)-(13), as its appropriate
Lu li.r-Lagrarne e.iuations.
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Moreover, replacing the electric enthalp H by its quartic
version (7) in the variational principle (45), one obtains
a sliqhtly different variational principle with the new
definitions L.. and L. of (43a) and (43b) in the form

L. .=T. .- (C. - E +l/2C ISS
L] Ti ijklSkl-Cijk k ijklmnS k mn

+ 1/6 Cijklmnrs Skl Smn Srs)

L D D.-(C ijkS +C ..E ) (50)1 1 ] jk I] j

which leads to the constitutive equations (9).

In the unified variational principle (45), by use of the
fundamental lemma of the calculus of variations, one obtains
all the fundamental equations of nonlinear piezoelectricity,
that is, (l)-(6) and (10)-(13), but (1c) and the initial
conditions (14) and (15). Conversely, if the fundamental
equations except (1c), (14) and (15) are met, the variational
principle is evidently satisfied. The variational principle
can be further extended, following the method indicated by
Tiersten [183], so as to adjoin the initial conditions as
well as the jump conditions (16) and (17) into (45); the
result is a differential type of variational principle [47],[49].

In closing, the unified variational principle (45) does
agree with and contains, as special cases, certain earlier
variational principles operating on some of the field vari-
aIles (e.g., 21]-[27], F30]-[32], [47] and references cited
therein). The variational principle can be specialized to
derive several new variational principles in nonlinear pi-
ezoelectricity. Of these principles, the variational princi-
ple (25) operating only on the electric potential and the
mechanical disolacements is recorded as

, ' * ,i =0 (51)

and its reciprocal variational principle is expressed by

Sij'T ij ' i' i'ý' ' i •

"B 1 ]j 1 ] 1 1 1 ]E i. + 1+K . . j . .+ K . 1D .) d V

+ "T dt.' B L .t 1 dS+fT dt 'rB K*5o dS=O (52)
u
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in the notation of (43). The reciprocal variational princi-
ple (52) is simply obtained by discarding the term involving
6u. and 6ýin (45). The Euler-Lagrange equations of this1

principle represent the divergence equations (3) and (4),
the constitutive equations (5) and (6), and the boundary
conditions (11) and (13), and the principle has the admis-
sibility conditions (1), (2) ,(10), (12),(14) , and (15) as its
constraints. Whereas the two-field variational principle
(51) has (1),(2), (10), and (12) as its Euler-Lagrange
equations, and its admissibility conditions are (3),(6), (11),
and (13)-(15). Thus, the variational principle (52) is the
reciprocal of the variational principle (51), since the
roles of admissibility conditions and the Euler-Lagrange
equations are interchanged.

6 - VARIATIONAL PRINCIPLES FOR INCREMENTAL MOTIONS IN
PIEZOELECTRICITY

Initial stress or initial strain is a new design feature,
and their introduction may be effectively utilized to
control the performance of some piezoelectric devices.
Their presence may significantly change the dynamic behav-
ior of piezoelectric elements as revealed by many investiga-
tions (e.g., [46], [58], and in particular, [59]). Neverthe-
less, no efforts have been made to formulate the governing
equations of a piezoelectric medium under initial stress
through variational principles. Thus, this section is ad-
dressed to the derivation of variational principles for the
strained piezoelectric medium. In what follows, Hamilton's
principle is used in deriving a two-field variational
principle which generates only the divergence equations and
the associated natural boundary conditions. Then, the
variational principle is augmented by applying Friedrichs's
transformation so as to incorporate the remaining fundamental
equations of medium. Before proceeding further, the three-
dimensional fundamental equations of strained medium are
recorded for ease of reference as follows.

In the space E, consider a regular, finite, and bounded
region B +ýB of piezoelectric medium, with its boundary
surface 3B , in its initial state. The initial state is
taken to be self-equilibrating following a static loading in
the natural (or stress-free) state of region at time t=0.
The fundamental equations of initial state can be expressed
by the same equations (l)-(15) when the dynamic terms are
dropped out and the quantities of this state are designated
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by a zero index (e.g., [60]). Then, by an elastic motion
superimposed upon the state B +3B , which is subjected to
initial stress, the piezoelectric region acquires its spa-
tial state B+3B at time t=t . For this type of incremental
motions, (23) deduced from Hamilton's principle can be
written in the form

6I d t B KdV6

-c dtf [(T0 +Ti. ) S. -D .Ei]dVBT ij j ] ij i

+ dT d0*+t*)i ui+T* 6ýJdS=0 (53)

where the kinetic energy is defined by

K=l/2 p.u 6. (54)

the Lagrangian strain tensor S.. and the electric field vec-
tor E. by 231

S.=e.i.+/2u U in BXT (55)
1 1] kfi k,j

E.:-d in BXT (56)1 ,i.

the surface tractions and surface charge by
0 0

tO n t.0 ,t=ni (t. ) (57)
j i i j' i ij+ ik'j,k

o= n.D. (58)
11

and the constitutive relations by

Tij =C ijklSkl-CijkEk in BXT (59)

D i=C ijkS jk+C. E. in BXT (60)

In the abnve equations, u. is the incremental displacement
vector, r0. is the symmetric initial stress tensor, -ri. is

13
the symmetric incremental stress tensor, and Cijkl, Cijk,

and C.. are the material constants of piezoelectric medium.
By 13 implying the usual arguments on the increments of
field variables [33] and taking into account the stress
equations of motion and 'he associated boundary conditions
in the initial state, and then following closely the
procedure in (22), one reads a two-field variational
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principle as

6,C {u.,}= dtf +[I[. . u ), -palu6 u T B ij+ikUj,k, , 3ujdV

+fT dtf B D i,i 6dV

+/T dtf B[t*_ni(,,ij+, 0T 9B ikj,k

5u. dS]

fT dt!9B (o-niDi)6ýdS:0 (61)

which hasthe divergence equations and the associated natural
boundary conditions as follows.

00
LO = (.+ T. pa.=0 in BXT (62)•lj i j kj , i- 3

L2 = Di =0 in BXT (63)
0 * 0

L t* - n (T )=0 on ýBXT (64)
L1j ] i ij+Tijj,k

L* (a* -niDi)=0 on ýBXT (65)

as its Euler-Lagrange equations (cf. [61]).

The fundamental equations of piezoelectric strained media in
the spatial state consist of the stress equations of motion
or Cauchy's first law of motion (62) and Cauchy's second
law of motion of the form

e ijk T jk 0 in BXT (66)

the charge equation of electrostatics (63), the linearized
version of strain-mechanical displacement relations (55),
namely,

S. .=e. .=1/2(u. .+.. . .) (67)13J lJ 1,] 3,i

the charge equation of electrostatics (63), the quasi-static
electric field-electric potential relations (56), the consti-
tutive equations (59) and (60), the boundary conditions of
surface charge and surface tractions (64) and (65), those
of mechanical displacements and electric potential of the
form

u.-u. = 0 on ýB XT (68)1 1 u
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- :0 on 3B XT (69)

and the initial conditions of the form

u i(x j ,t•o)-v (xi ) =0,

u.(xi't )-w.*(xj)=O in B(t ) (70)
1]0 1 0

x (x,t )- (xi)=O in B(t ) (71)

Of the fundamental equations, only (62)-(65) are included in
the two-field variational principle (61) and the remaining
fundamental equations and the usual condition (26) remain
as the admissibility conditions of the principle. By
paralleling the unified variational principle (45) in non-
linear piezoelectricity, the variational principle can be
further augmented so as to adjoin the remaining equations
into (61). In doing so, the dislocation potentials of the
form

0" "k F, • S -1/ 2 (u.i .j+u ) dV (72a)
S B ij - ij Ij , i

:.B i ( -/+ 2....V (72a)

211

0 0 * 0 *
A .(u-u.) + (- )]dS (72c)

are added to (53), namely,
0

7
and tv using the same approach as described in (53), the
Lagrange multipliers are identified with

0 0 0 0D = . •=t.=n t. . . . .~ n-.D.
ij -ij' i -1,3 i 1]j' 1 1 (74)

Ilence, upon substituting (74) into (73)and on bearing in
min-d the usual admissibility conditions, an augmented vari-
ational principle is obtained in the form

Sj ;j, ,a ,Ei,D.

-, (L 0 ýu +L 0.e..+K .0 .T )dV:T BLlj uj ij- 1 i] i]

+T dtf (L'z S+LA6E.+Ki D.)dV
'T B 2' 1 1
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0*
dtt L 0*1UjdS
T ~ lj :i

+T dtf B L 6tidS +:T dtf B L 2 z dS

+T dt! K K6 dS =0 (75)
~T %B

with the definitions (62)-(65) and

L0T
13 ij ijklSkl-CijkEk

0
K3 = e - /2(u ,j+u j,i)

0*
L = u.-u. (76)

1 1 1

and

Li=Di-(CijkSjk +CijEj)

K - (E.+ .
1 1 ,1

K = (ý-¢ ) (77)

Under the usual admissibility conditions mentioned for (45),

the variational principle yields the fundamental equations

of piezoelectric strained media as its Euler-Lagrange

equations, and conversely the principle is satisfied if the

fundamental equations are met. The variational principle

that is not fDund in the open literature covers the vari-

ational principles of linear piezoelectricity whenever the

terms involving initial stresses are dropped out.

7- CONCLUSION

Trh pap-r presents certain integral and differential types

of variational principles so as to generate, as their Euler-

Lagrange equations, the fundamental equations of an electro-

elastic solid with small piezoelectric coupling. The vari-

ational principles are deduced from Hamilton's principle by

modifying it through Friedrichs's transformation under the

usual continuity and differentiability conditions of field

variables. The first variational principle 65i{u,.,4} u 0 of

(25) is a two-field principle that generates the divergence

equations and the associated natural boundary condiions of
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electroelastic solid. This variational principle is extended
-y use of the dislocation potentials and the Lagrange

undetermined multipliers, and hence the variational princi-
ple oif 6{U! ), I), t' i ( E) 3' i}=0 of (37) is formula-

I 1] ii 3
ted for a finite and bounded region of the electroelastic
solid, with an internal surface of discontinuity. It is
shown that the divergence equations and the associated
natural boundary conditions for each region and the jump
conditions across the surface of discontinuity form a set
of necessary and sufficient conditions for the variational
principle (37). Another extension of (25) by Friedrichs's
transformations is the integral type of variational princi-
ple 6C 3 {A3 }=0 of (46),this variational principle has, of
course, all the features of classicalor true variational
principles and it produces all the fundamental equations of
nonlinear electroelastic solid but Cauchy's second law of
motion (1c) and the initial conditions (14) and (15) for
free and independent variations of the admissible state
Aq= {ui,S , tjý,,•a,E.,Di . In (46), introducing the

i ij if'1 11
complementary electric enthalpy I-C(-rij,Di) of (47) through

the Legendre transformation of the electric enthalpy
H(Si.,E.), the variational principle 6• 41{uiTij,ti; ,a,D.il

of (48) is formulated. This integral type of variational
principle leads, as its Euler-Lagrange equations, to the
inverted constitutive equations (49) in addition to the
divergence equations and the associated natural boundary
conditions. The variational principle 6-C 5 {S ,j ,t.ti;E.,

,D7 } =0 of (52) is the reciprocal of i] 1] 11

! {A! =0 of (25), and it is readily extracted from (46).
Moreover, two variational principles are derived for the
incremental motions of a piezoelectric solid subjected to
initial stresses. The variational principle 6C 6 {ui, t}=0
of (61) is precisely the counterpart of 6Z1{A 1 }=0 of (25),
and the variational principle 67 {ui,e ijij,ti;,G,Ei.,Di} =0

of (75) is that of «3-A)},=0 of (46) in the case of piezo-
electric strained solid.

The variational principles SrpA3} of (46) and 6Z 7 {A7 } =0 of
(75) are quite general, and they are compatible with and
contain, as particular cases, some of variational principles
(e.g., [2l]-[27], [30]-[32] , [47]-[49] and references therein)
in the absence of elastic nonlinearities and/or initial
stresses. Besides, the variational principles recover, of
course, their counterparts in elastodynamics, if the terms
involving the quasi-static electric field are dropped out
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(cf. [51 , [33] , [34]). On the other hand, the unified' vari-
ational principle (46) can be specialized to obtain a number
of variational principles operating on some of the field
variables. Of these variational principles, it is worthy
to mention a two-field variational principle operating on
the stresses and the electric displacements in the form

6 -C rij'Di} :IT dt 'B IKij '"K] 1 Di)d1 V 0 (78)

which holds if and only if the strain-mechanical displacement
relations (3), the electric field-electric potential re-
lations (4) and the electric boundary conditions (13) are
satisfied. A three-field variational principle is recorded
in the form

f o ui' Tij' I

=T dt! B(Llj6u+L 2f6+Kij6Tij)dV

T dtf 3B LIj 6ujdS+fT dtf B L 2 56dS=0 (79)

which operates on the mechanical displacements, the electric
potential and the stresses and holds only for the case when
the divergence equations (1) and (2) , the strain-mechanical
displacement relations (3) and the surface charge and
traction boundary conditions (10) and (12) are met. Along
this line, a four-field variational principle is expressed
by

S6{A =T dtrB (L 1 5u +L6+L 5 S
10 IC 1 2 ij ij

+ L iEi)dV

+!T dt B Llj6U jdS

+,T dtB L 2 5dS=0 (80)

for all the admissible states A = {ui,S ij ;,Ei} in the

notation of (25) and (43); this operates on the mechanical
displacements, the Lagrangian strain, the electric poten-
tial and the electric field, and it is subjected to the
constraint conditions (3), (4),(11), and (13)-(15).
Moreover, another variational principle readily follows
from the variational principle (75) as
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- , i ,t' .

(' K0
"T "b 1B . I] 13 13

L T dt (i '+K"O )d

R i i +6D V

0*
+'" dt!B LI 0*St-dS

+ t *K 6 dS = 0 (81)

in the not....on of (76) and (77) ; this is obviously the
reci:crocal of the variational principle of (61), namely,

S. u. 0 (82)

In s.r-r..• ,-, t•e foregoing variational principles are
arcurec in two families dealing with the nonlinear and
incremental mnzions of piezoelectricity. They provide a
stannýr4 basis for generating approximate direct solutions
in ter7s of the trial functions which can be readily cho-
sen, 'v means of the finite element and variational meth-

cds. The unified variational principles (46) and (75) allow
one to make simultaneous approximation upon all the field
, =-r•=es1-' since their constraint conditions are removed and

u.-cwn Ta=zranqe multipliers are expressed in terms
of orizinarial field variables, providing their physical inter-
Creta T-........ admissible states of unified variational

:rinciles area subjected only to the initial conditions to-
thte usual continuity and differentiability con-

ii ccns field variables and the symmetry of stress ten-
sr. - t- e ... exception of the latter condition, the

i SIo of wh.-ich is not studied yet, the removal of con-
ta'' n•-i4.:ons is of certain value from the standcpont

7c.al economy, and hence it is most often de-
s ~e. -owever, if the constraint conditions are satis-

t- y. trial functions, the choice of which is often
e approximation of some field variables be-

c<=e -o re accurate. On the other hand, by further ap-
------- .. cf _aaoricns's transformation, there is no dif-

in ex-:ending thp present principles to the vari-
r -;-inciles in which the thermal, polar and nonlo-

ca! effects as well as the probabilistic and relativistic
nealie are incorporated (e.g., [62]-[65]). In

: t , noteworthy is the removal of the initial condi-
t- .... for the two families of variational principles as
was described by Tiersten [18]. The work devoted to some
of these cases and, in particular, that to illustrate the
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use of the variational principles presented are now in
progress, and they will be reported in a forthcoming memoir.
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CHAPTER 3

NONLINEAR ELECTROELASTIC EQUATIONS OF WAVE
PROPAGATION AND VIBRATIONS IN QUARTZ BARS

ABSTRACT

This paper presents the nonlinear electroelastic equations
of wave propagation and vibrations in a quartz bar of
uniform cross-section. To begin with, Hamilton's principle
is stated for a nonlinear elastic continuum with small
piezoelectric coupling, and then by carrying out the
pertinent variations, a variational principle with certain
constraints is formulated. The constraints are incorporated
into this principle through the dislocation potentials and
Lagrange undetermined multipliers, and hence a generalized
variational principle is derived for the motions of
nonlinear piezoelectric continuum. Next, the generalized
prin:iple together with a series expansions of its
mechanical displacements and electric potential, a system of
nonlinear equations of the quartz bar is consistently
obtained. These one-dimensional equations of higher orders
of approxi ation in which account is taken of only the
elastic nonlinearities govern all the types of extensional,
flexural and torsional motions of quartz bar. Also,
special motions of cuartz bar and those of quartz bar with
init'il stresses are pointed out. Lastly, the fully
line rized governins equations of quartz bar are considered,

7e uieess o0 their solutions is examined and the
sfficient conzitions are enumerated for the uniqueness.

I- I-_TRDVTID";

Essentially, piezoelectricity is a reversible, inherently
anisctropi2 an- polarizable but not magnetizable field, and
the field is quasi-static and linear. In piezoelectricity,
the elastic field is considered to be dynamic, while the
electric field is taken to be static; this quasi-static
approximation is well justified in all cases of engineering
interest. Besides linearity in piezoelectricity, there may
exist either an intrinsic nonlinearity or an induced
nonlinearity. The former is peculiar to a piezoelectric
material, whereas the latter is due to its deformation.
The application of intrinsic or induced nonlinearity and/or
both of them can significantly affect the mechanical
cehavior of piezoelectric elements. This is desirable in
some cases an it has been examined only for a few particular

100
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motions [1i. In view of this review article Vi1], the present
paper is concerned in deriving the one-dimensional nonlinear
electroelastic equations describing all the types of motion
of thin cylindrical quartz bars.

Recently, extensive studies have been made of one-dimensional
piezoelectric problems at low frequencies [2-5, 10-21]. They

have been directed toward either deriving differential
governing equations of bars as in few cases [2-5, 7-91 or
solutions of specific bar problems as in most cases [10-21]
Among the former cases, Milsom and his colleagues [2,3] have
presented a three-dimensional mode-matching theory of
piezoelectric rectangular quartz bar. Tiersten and Eellato
[4] have constructed the macroscopic equations accounting for
the nonlinear extensional motion of thin piezoelectric rods,
and they have applied these equations in the analyses of both
internodulation and nonlinear resonance of quartz rods. As a
special case of their electromagnetic theory of rods, Green
and Naghdi [5] have studied the isothermal vibrations of
piezoelectric crystal rods. Moreover, following Mindlin [6],
the author [7-9] has derived a one-dimensional theory of
vibrations, which accommodates all the types of motions of
piezoelectric crystal bars for both low as well as high
frequencies. He has taken into account all the mechanical
and electrical effects, and also he has described an
application to biomechanics.

Efforts to solve certain problems of piezoelectric bars have
been recently made by various authors [1,10-21]. Eer Nisse
[13] has calculated approximately the electrode stress effects
for ln-nh-extensional and flexural resonant vibrations of

long, thin bars of ouartz. An analysis of the flexural-
ncDe equation has been presented for a rod with a vibration

isolator :14]. The mechanical behavior of a piezoelectric
bar has been studied with an electrical voltage as well as a
time-dependent flux of heat at one end [15]. A simple one-

dimensional model has been used to investigate the effect
of the relaxation time on the behavior of a semi-infinite

piezoelectric rod under a thermal shock at its end [16].
Moreover, the extensional vibration of a cylindrical rod

with longitudinal piezoelectric coupling has been dealt with

Ln an approximate procedure, and the depolarizing-field
effe. • has been analyzed in a rod of finite and infinite
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length [17i. A detailed numerical analysis of the dispersion
relations has been reported for the axisymmetric normal waves
of a piezoelectrically active bar wavequide r18]. Further
the vibrational dissipation characteristics of a
piezoceramic bar have been considered [191, as has the
electrical excitation of an asymmetrically radiating bar [20].
Most recently, Solov'ev [21] has examined the influence of
the electroted zone on the natural frequency of thickness
resonance of a piezoceramic rod of rectangular cross-section
under the conditions of plain strain.

Our aim in the present paper is (i) to obtain variational
formulation for the nonlinear equations o- an electroelastic
solid with small piezoelectric coupling, with the help of this
formulation, (ii) to derive a one-dimensional nonlinear
electroelastic equations describing all the types of motions
of thin quartz rods, and then (iii) to consider special
motions of quartz bars and those of quartz bars with initial
stresses, and also to examine the uniqueness of solutions in
the linearized bar equations.

In the description of motions of the electroelastic solid,
only the elastic nonlinearities are included, and hence the
electrical behavior is taken to be linear. Accordingly, in
the treatment of quartz rods which have small piezoelectric
coupling, the nonlinear stress equations of motion, the
associated nonlinear boundary conditions and the nonlinear
strain-mechanical displacement relations are used, while
the linear charge equations of electrostatics, the associated
linear boundary conditions and alike are employed. Also, in
the constitutive equations, the second-order, third-order
and fourth-order elastic coefficients of quartz are retained
for the stress tensor, and only the linear terms for the

e7eric displacements.

Specifically, the content of this paper is as follows. First,
the three-dimensional nonlinear equations of electroelastic
solid are summarized in Section 2. This is followed in
Section 3, by Hamilton's principle for the electroelastic
solid and the associated quasi-variational principles. The
geometry of a quartz bar is described, and also the series
exnansio-< for the mechanical displacements and the electric
potentia Df quartz bar are recorded in Section 4. The
nonlinear electroelastic equations of quartz bar are derived
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i- nears of thie quasi-variational principles togeth1r witr
thne series expansions in Section 5. Special motions of
quartz bar are considerod, and especially che 1ineari-,,
equations and the uniqueness in their solutions are sYudied
in Section 6. Finally, the concluding remarks and further
needs of research are indicated in Section 7.

N o t a t i o n - In this paper, standard Cartesian tensor
notation is used in a Euclidean 3-space E. The xk-system

of the space E is identified with a fixed, right-handed
syteRn of Cartesian convected (intrinsic) coordinates.
Einstein's summation convention is implied for all repeated
Latin indices (1,2,3) and Greek indices (1,2), unless
indices are enclosed with parantheses. Further, commas and
primes stand for partial differentiations with respect to
the indicated space coordinates and the coordinate x 3 , the

bar axis, respectively, and superposed dots for time
differentiations. Asterisks are used to designate prescrie~d
quantities. The symbol B(t) refers to a region B with its
boundary surface 9B and closure B(=BULB), at time t in the
space E, and BXT refers to the Cartesian product of the
region B and the time interval T=[t,tl). Also, boldface

brackets are introduced so as to denote the jump of enclosed
quantity across a surface of discontinuity S of the region B.

2 - NONLINEAR PIEZOELECTRIC EQUATIONS

In the three-dimensional space El let B+ýB stand for an
arbitrary, simply-connected, finite and bounded region of
space occupied by an anisotropic elastic continuum with
small piezoelectric coupling at time t=t . The regular
boundary surface ;B is consist of the complementary
subsurfaces (Su,S ) and (S ,S,), that

ut
is, S USt=S US.=ýB and S SS tnS=O.. Also, let BXT

u t I u t i I
represent the domain of definitions for the functions
of (xkt).

Now, the three-dimensional differential equations are
expressed for the electroelastic continuum with small
piezoelectric coupling in the x -system of Cartesian
coordirvates as follmi.; [22,23].
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DiverQ en c e qu a t i o n s

t kl,k-a = 0 in BxT (I)

tkl = rk1+Tk=kr(r+Ul,r) (2)

D kk=0 in BxT (3)

with the definitions

tkl= asymmetric Lagrangian stress tensor measured per
unit area of the undeformed body

Tkl= symmetric Kirchhoff stress tensor

T = krl,r= Maxwell electrostatic stress tensor

density of the undeformed body

ak = Lagrangian acceleration vector

uk = displacement vector

kl= Kronecker delta

Dk = electric displacement vector

Here, Eq. (1) stands for the nonlinear stress equations of
motion and Eq. (3) for the linear charge equation of
electrostatics. In Eqs (1) and (3), when the stress tensor
tk per unit area of the undeformed body, associated with a

surface in the deformed body, is referred to the base vectors
in the deformed body, T kl arises, while if tk is referred to

the base vectors in the undeformed body, tkl ensues.

Gr a die n t Eq u at ions

+k1 (u +U u u ) in BXT (4a)kl 2 k,l 1,k r,k r,1

S =e + 1 (e ±w )(e +w I(4b)kl kl 2 rk+ rk rl+ rl
1 1

ekl 2 (uk,l+ulk)' Wkl 2 (Uk,l-ul,k

E = -k in BxT (6)

t t k
with the definitions
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S K Lagrangian strain tensor

e = linear strain tensor

w = rotation tensor

k = electric potential

Ek = quasi-static electric field vector

Equation (4) represents the nonlinear strain-mechanical
displacement relations and Eq. (5) the electric field-
electric potential relations.

Cons t i tut i ve Equa t ions

1 H ÷ m__ in BXT (7)
•kl 2 9Skl aslk

D k in BxT (8)Dk = Ek

with dhe definitions

H = U - EkDk = electric enthalpy

U = potential energy density

A quartic form of the electric enthalpy is recorded in the
form

1 C 1 c E- E S2 klmn kl mn 2 k1 k 1 klm k lm

+ 1 S + 1C S S sS (9)
6 Cklmnrs k1mn rs 24 klmnrstu k1 mn rs tu

In view of Eqs. (7) and (8), this equation yields the nonlin-
ear constitutive equations for the components T kl of the

symmetric stress tensor and the linear constitutive
equations for the components Dk of the electric displacement
vector as

T S -C E + C S S
kl- klmn mn mkl m 2 klmnrt mn rt

I C S S (10)
6 klmnrtpu mn rt pu

Dk C SklmSlm C klE1 in BxT (11)

Here, Cklmn, Cklmnrt and Cklmnrtpu are the second-order,
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third-order and fourth-order elastic constants, Cklm is
the piezoelectric strain constants and Ckl the dielectric

permittivity. Of these constants, the elastic constants
refer to free constants since they describe the stress-strain
relations when the electric field is absent, while the

remaining constants refer to clamped constants [24]. Further,
the usual symmetry relations hold for these material
constants, namely,

Cklmn= Clkmn= Cmnkl' Cklm= Ckml Ckl= Clk

Cklmnrt: Cmnklrt: Crtmnkl= Clkmnrt (12)

Cklnp=C Crmkp C = C
klmnrtpu mnklrtpu= rtmnklpu pumnrtkl _lkmnrtpu

S o u n d a r v C o n d i t i o n s

t1k - ntlk = k-nlTlr(6kr + Uk,r) 0 on S txT (13)

o - nk k D 0 on S xT (14)

u - ul = 0 on S xT (15)k K u

- =0 on S xT (16)

with the definitions,

t. = n t = stress vectorS 1 1k

nk = outward unit vector normal to 33

u= nk D k= surface charge

Initial C ond it ions

Uk(xl,t) - uk (x 1 ) = 0

k (Xlft0)-W k(lx 0 in B(t ) (17)

(xkt) -k t(xk : 0

Jump Conditions

nfk[tki = 0 (18a)

nk [(6 4u)J a 0on SXT (18b)
nk kr(lr+Ul,r1 +tIa =0
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n k[DkJ : Q on SxT (19)

EUkI = 0 (20)

[ = 0 (21)

with the definitions

t =applied prescribed surface traction

Q = electric surface charge density

S material surface of discontinuity

Equations (1) - (17) completely describe the nonlinear
behavior of electroelastic continuum with small piezoelectric
coupling, and the last four equations arise at a material
surface of discontinuity.

3- VARIATIONAL FORMULATION

In piezoelectricity, the fundamental equations have been
often expressed in variational forms as the appropriate
Euler equations of variational principles [1,25-30]. These
variational principles have been primarily derived with the
aid of Hamilton's principle [1,6,25]. and they allow the
establishment of lower order theories and approximate direct
solutions in piezoelectricity r26,311. Now, Hamilton's
principle is stated for the nonlinear elastic continuum
'with small oiezoelectric coupling as

5 (.,rdt +.'zWdt = 0 (22)
T Twith the definitions

B[K - H(Skl,Ek)]dV (23)

2 kk (k24

1:", = (tk uk - €d S (25)
-~k k

where £ is the Lagrangian function, K the kinetic energy
density and 5W the virtual work per unit area done by the
prescrib.d surface tractions tk and surface charge oý

By inserting Eqs. (23)-(25) into Eq. (22), one arrives at
the variational equation of the form.
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6>•= f dt f 1 H1(SkEk)]dv
T* B 2 k'k k1'k

+f (tt6 uk - 6 )dS) = 0 (26)
DB

where all variations vanish at t=t and t=t Taking the
indicated variations, utilizing the fact thAt the operation
of variation commutes with that of differentiation, integra-
ting by parts with respect to time and employing the
constitutive relations (7) and (8) and the constraints on
the variations, Eq. (26) takes the form

f dtf( pak 6uk+Tkl6s kl-D k6Ek )dv
T B*

+ f dt f (tk 6 uk -a (D) dS = 0
T

By substituting the nonlinear strain-mechanical displacement
relations (4) and the linear electric field-electric poten-
tial relations into this equation, employing the divergence
theorem and rearranging terms, one finally obtains

6>C= f dtf{ f Tkr(61r +ul,r)],k-Pal)} 6uldV
T B

"+ f dtf Dk,k 6 dV
T B

"+ f dtf [tk - nllr(6 kr+Uk6r)J UkdS
T 3B *

+ f dtf (a -nkDk) 6DdS = 0 (27)
T •B

In deriving this variational principle, the principle of
conservation of mass is considered and the condition

;uk = 6¢ D 0 in B(t ) and B(t 1 ) (28)

is imposed. Since the variations 6uk and 6( of the admis-

sible state Ah ={ uk,D } in Eq. (27) are arbitrary and

independent inside the volume B and on the boundary surface
ýB, one has the nonlinear stress equation of electrostatics
(3) and the associated natural boundary conditions of
tractions and surface charge (13) and (14) as the appropriate
Euler equations of the variational principle (27). This is
a two-field variational principle, and it contains some of

earlier variational principles as special cases [1,25,32,33].
Further, it is of interest to note that this variational
principle can be extracted from the principle of virtual work
as well [30].
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The differential variational principle (27) can be used, as
usual, in solving approximately the boundary-value problems
of nonlinear elastic continuum with small piezoelectric
couplina, provided that the initial conditions (17) may be
left out of account by a variety of numerical techniques
[34,35]. Besides, any approximating solution must satisfy
the rest of the fundamental equations (4) and (6)-(8) in
accordance with Eq. (27) as well as the usual continuity
and differentiability conditions of field quantities and the
condition that the stress tensor be symmetric. This feature
of Hamilton's principle has been discussed very thoroughly
by Tiersten [36] and Gurtin [37]. However, the constraint
conditions (4) and (6)-(8) can be relaxed through certain
methods [37-39]. Of these methods, Friedrich's transformation
[38] is used herein so as to remove the constraint conditions
due to its versatility and wide use in the literature [39].
Accordingly, to adjoin the constraint conditions into the
quasi-variational principle (27), the dislocation potentials

each constraints as a zero times a Lagrange multiplier,

are introduced as

•-1 ýk s i 2 Uk,1 l,k+Ur,kUr,l)

l2:Nk (Uk - uk)

21= -(29)

'22= k Ek +

and they are adced to Eq. (22), namely,

•j = {�X .÷Sdt { 1 (i + 2 )dV + :_ dS
T11 '22 1

T B i 2 S1

dS S = 0 u (30)
~21

with the virtual work of the form

t tk UkdS -. ri • dS (31)
S t so

Then, treating all the variations in Eq. (30) as free,
one finds
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J 1 dtf -pak6u 1 (- + )+S---6-- 1 E]dV

T B 2 aSki as1k k Ek

+ f dt : t 5u - f dtf a 61 dS
T S tk k T So

"+ f dt r{ o lSk (u-+U +u

T B kl 2 k,1 1+,k +UrkUr, 1

"+ kl[Skl-('Uk,l+Ur,kaur,I)]} dV

"+ f dtf 6 k(E k + D' k)+Pk(6Ek +D, k)]dV

T B

"+ fdt 1[6x (U UQ + X 6u udS
T s k k k k~

u
"+ f dt ! [• (¢- • ) +p6?]dS = 0 (32)

T S¢

As before, by applying the divergence theorem and after some
rearrangement, the stationary condition (32) readily gives
the Lagrange multiplier in the form

•kl= kl ' 'k D k' Ak= t k = nItlk

S= - a = -nkDk (33)

since the volumetric variations 6 Uk' 6ý, 6Skl' 6 Ek, 6 Akl

and ;k are arbitrary and independent in the region B and

the surface variations 6 uk, 6D, 6xk and Pv on the boundary

surfaces Su, S¢, St and S

Finally, from Eqs. (30), (31) and (33), one obtains the
variational principle as follows.

5J<A->= j klkldt = 0 (34a)
T

where

A ={uk' tk' k ,kl' S ; k ,a, DkEk } (34b)

and

~~al~ = TkV ~ (35)L ['kr("ir+Ul,r)] ,k-a} UldV

811212 1Dk k6dV (36)
B
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S ] dV (37)
J1313 _ B • kl- -2-- -- S kl DS k kl

2 JB(D + 6H 6EkdV (38)
2121 B k E )~kdk

I [ 2 I2 2  +uS T 1dV (39)B2222 B k1 2 (Ukl+Ulk kUrl,l kl

6J2323= f(Ek + 'k)S DkdV (40)
B

6J3131=: [tk-n1Tlr(6kr + Uk,r)l gUkdS (41)
t

5J3232= ;(o -n kDk k5dS (42)
Sa

6J 3 3 3 33 j(u k - uk)5 tkdS -f (D -D) 6adS (43)
Su S

This variational principle may be written in a compact form
by

gJ<A> =: dt{{T ([Skl- +U( +U r]
T B kl 2 k,l+l,k r,k r,1

- Dk(k÷ + ) + K - H (SklEk)}dV
k -k ,k k

-s(U. - uk) tkdS +tkUkdS
u t

--) ads + ca dS} = 0 (44)
S• S a

The variational equation (34) or (44) generates, as its
Euler equations, the fundamental equations of nonlinear
elastic continuum with small piezoelectric coupling, and
hence we conclude a variational principle below.

V a r i a t i o n a 1 P r i n c i p 1 e : Let B+3B denote
regular, finite and bounded region of the space E, with its
piecewise smooth boundary surface ýB(=SuUSt=SUS, and

SuASt=S1S 7S=Y and its closure

B(=BU3B). Then, of all the admissible states

A(=uk,tkTkl,Skl;D,cDkEk) which satisfy the initial

conditions (17) as well as the symmetry of stress tensor

T kand the usual continuity and differentiability
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conditions of field variables; if and only if, that admissible
state A which satisfies the nonlinear stress equations of
motion (1), the linear charge equation of electrostatics (3),
the nonlinear strain-mechanical displacement relations (4),
the electric field-electric potential relations (6), the
nonlinear constitutive equations (7) and (8), and the natural
boundary conditions (13)-(16), is determined by the
variational equation 6J<A> = 0 of Eq. (44) as its appropri-
ate Euler equations.

The variational principle (44) is believed to be first report-
ed herein, and it does agree with and represents, as special
cases, certain earlier variational principles operating only
on some of the field variables [25,30,32,33]. By use of the
fundamental lemma of the calculus of variations, the principle
(34) or (44) leads readily to all the fundamental equations
of piezoelectric continuum with small piezoelectric coupling,
Eqs. (1), (3), (4) (6)-(8) and (13)-(16), but the initial
conditions (17); conversely, if these equations are met, the
principle is obviously satisfied. Further, the variational
principle can be readily expressed, following Tiersten E36],
in an augmented form which incorporates the initial
conditions as well as the jump conditions (18)-(21); the
result is a differential variational principle [29,30].

In closing, it is of interest to note that the expressions
J 1313 and 5J2121 in Eqs. (37) and (38) take the form

511313 B Ikl-(CklmnSmn - Cmkl'mB

1
2 Cklmnrt mnS rt

1 S S )16SkdV
6 klmnrtpu mn rt pu k1

612121= -fI•Dk - (CklmSlm + CklIEl)16E kdV (45)
B

in the case when the constitutive equations (10) and (11) are
used in lieu of Eqs. (7) and (8).
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4- :X(PA>:S VO IN SERIE~S

This section deals with the description of bar geometry, the
method of reduction in deriving the electroelastic equations
of quartz bar and the expansion in series for the field
variables of quartz bar.

G e o m e t r y o f Q u a r t z B a r - Consider an
initially selender quartz bar of uniform cross-section in
the Euclidean 3-space 1,. The bar is referred to a system of
right-handed Cartesian convected coordinates xk' The axes

xa are selected as the principal axes of bar cross-section,
and the axis x3 is taken as the locus of centroids of bar

cross-sections which is a straight line in the undeformed
bar. The cross-section of bar A is bounded by a simply-
connected Jordan curve C, that is, sufficiently smooth and
non-intersecting. Moreover, by definition, one has the
fundamental assumption of bars, d/¼<<1, where d is the maxi-
mum diameter of cross-section and R is the length of quartz
bar. In addition to this, no singularities of any type is
supposed to be present within the region of quartz bar.
Thus, the bar is treated as a one-dimensional continuous
model of a three-dimensional body.

7 e t h o d o f R e d u c t i o n - The presence of
electric field and material anisotropy makes it almost always
compulsory the use of approximate lower order equations in
investigating the dynamic characteristics of piezoelectric
elements. Of the standard techniques [6,40-43], to reduce
the three-dimensional equations of piezoelectricity into the
lower order equations, Mindlin's method of reduction [6], is
especially suitable and wide use in the literature [25,40-43],
and it is used herein so as to construct the nonlinear
electroelastic equations of quartz bar. This method of
reduction rests entirely on the series expansions of field
variables which are inserted in a pertinent variational
principle which is then integrated with respect to one-or
two-dimension.

E x p a n s i o n i n P o w e r S e r i e s - Under the
usual existence, regularity and smoothness assumptions of
bars and their fundamental assumptions, mentioned above, a
set of shape functions (8 1 1 ,i 1 2 . . . . . . S mn) is selected, and

the shape functions are taken to be complete for a given
field quantity in the bar region. Then the electric
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potential and the displacement components are represented by

a, ((m,nm ,m,n)
Here, and uk are unknown a priori and independent

functions of electric potential and mechanical displacements
of order (m,n) to be determined, and the shape functions Smn

of order (m,n) can be selected to be any type of functions
which is appropriate to the contour of cross-section and they
are taken as a power series of the form

(X) = mx n (47)

in the present analysis.

5- NONLINEAR BAR EQUATIONS

In this section, by means of the method of reduction described
in Section 4, the system of one-dimensional, nonlinear
electroelastic equations of quartz bar is consistently
derived. To begin with, the series expansions (46) are
inserted into the variational principle (34), the volume
integrals are split into an area integral over a cross-section
of, and a line integral along, the quartz bar, and then the
intecrations are performed. The resulting equations are
recorded below in terms of various field quantities of higher
orders which are now defined.

F i e 1 d Q u a n t i t i e s o f O r d e r (m,n) - The
stress resultants of order (m,n):

M (m,n) m n
Tkl 1 24k)

N(m,n) = N - [mpT (m+p-2, n+q)

pqk p+q0 ii

"(m+p-l , n+q-l) + qnT22(m+p, n+q-l)+(np~mq)Tl 2  n 2 mP

p (m+p-', n+q) e (m+p, n+q-l)]u (p,q)" p 31 + qT 3 2 k



"+ T 33 mc1 nq)u (p,q) + r(p+m)T (3rn--p-i , n+g)

" (qn)T (m+p, n+q-1) +T' (m+p, n+q-1ljup~cn}

23q~) 33 u

the surface loads of order (m,n):

Pk(rn,n) mý 1 ¾ T Y r dA (49)

(m,n) (m,n) (m,n)
k Pk + Rk (50)

R (m,n) =N ~(P(m+p-l, n+q)
k p7+q=O [(P1

+ cP2 (m+p, n+g-l) )u (p~q) + (m+p, n+q) Uk (p,q)] (51)

N 3k E Lq (pT 3 1 (m+D-1, n+q)
p~c=

" T3 3 (m~pI u k (q)] (52)

the acceleration of order (m,n):

(rn,n) (rn+p, n+q) p,q)(3)

Ak(m,n) = 0 (m,n) (53b)

the prescribed stress resultants of order (m,n):

T(mln) - xmxn *(m,n) =,m n *
Tk . 1 2 t kdA P k ý,xI2 tK s(4

the aerial moment of inertia of order (m,n):

mn) -x 1 x2n dA (55a)

wihthe usual quantities of bars as

I(") IA (1,0= I (01)= I ~(11)= 0 (55b)
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the electric displacements of order (m,n):

(m,n) x mx2nD kdA (56)k A 2k

the surface charge of order (m,n):

D(n) _ xm u D ds (57)C1 2 a a

and the prescribed surface cha~ge of order (m,n):

G*(m,n) 1 * A d * (m,n)= m x Imx2 nd D * ds (58)
A C

are defined. In the above equations, u denotes the unit

outtward vectors normal to the contour C of cross-section.
Also, the electric enthalpy function G measured per unit
length of the undeformed bar, namely,

G = rHdA (59)
A

is introduced for later convenience.

E q u a t i o n s c f M o t i o n - Consider the volume
integral (3.14) of the form, namely,

a1, ;,kral+ u ' ) ,UdV (60)_j1111 c A3 [' r(r 1,r'lk

Substitutinz the series expansions of mechanical displace-
ments (46) into this integral, carrying out the integrations
over A, using4 the divergence theorem and replacing the
stress and load resultants of order (m,n), one obtains

N•J •dx Z fT (m,n)_ l (m-1, n)

1111 - 3 3k 1T kL m+n=0

-nT (m, n- ) (m,n) (m,n)
-n 2k + 5 k + (1

(in. (m n)) u (m'n)
- u(61)

Kk
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where L stands for the interva t [•, ]. When se-ýtting tne

variational equation (34) equal to zero for the arbitrary
and independent variations of field quantities such as

k'n in this case, one readily obtains the macroscopic

equations of motion of order (m,n) in the form

T (rn,n) (m-i, n) (m, n-I) (m,n)

1 TIk mT2k +Nk

+ Qk(m'n) ,Ak (mn) : 0 on LxT (62)

for the quartz bar.

Charge Equa t ion of Electrostatics
As before, evaluating the volume integral J 1 2 1 2 of Eq. (36),

one arrives at the macroscopic charge equation of

electrostatics of order (m,n) in the form

D' (m, n)_ _ mD (m-1 , n) ( nD2(r, n-i) + D(m,'n)= 0 (63)

Di)-m 1  -D 2 0

in terms of the quantities defined by Eqs. (56) and (57)

7 ec t r i c Field and Strain
D i s t r i b u t i o n s - Likewise, considering Eqs. (39)
and (40), integrating over A and using the stress and
electric disclacements of order (m,n), the distribution of
strain of order (m,n):

N m n5  (m,n) ( (64)
S x (X ,t) =S (X X (
1 m) M+n=0 i 2 k1 3

where

S (m,n) .e (m,n) + I m+n (ek(m-p, n-q)
ki kl 2 p+q=0 (rk

+ k (m-p, n-q) )(e 1 (pq) +W (p,q) (65)

with

S(r,n) + i (m+1) , n) + 6 u (m+ 1, n))

2 = a) ( uiB a

+ (n+l) (H 2 u (m, n+1) +,2u (m, n+, )

2(t a Cci
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e (,n) + -- (m,n) +l)5 u (m+l, n)
a 3- 2 1Lat

+ (n+12au3 u (i, n+1)]

((m,n)_ 1 [(m+1) (6 (m+l' n) (m+I, n)
a- 2 -1 1 u1

+ (n+1) (S2Bu a (m- 62 (,u B f(m,

w (m,n) I (mn)_(+ 1 (m+1,

a3 2 u. ra 3

_ (n+1)6 2 u3 (i, n+l)3

e (m,i n) u (m,n) w (m,n) 0 (66)e33 3 33

and that of electric field of order (m,n):

N m n (m,n)
E k(xn-t) E X X 2  k (x 3't) (67)

where

S(m,n) = _mm+l)1 •(e+l, n)

+ (n+1) 2 a rn,

E3(m+n) = - (r,n) (68)

are found for the vanishing of the coefficients of free
variations of the stress resultants and electric displace-
ments of order (m,n) of quartz bar in the variational
equation (34)-

C o n s t i t u t i v e E q u a t i o n s - Paralleling to
the derivation of electric field and strain distributions
above, the volume integrals (37) and (38) are evaluated by
use of Eqs. (48), (56), (64) and (67), and then the
constitutive relations are obtained for the stress resultants
of order (m,n) and the electric displacements of order (m,n)
in the form.

(ie,n) 1 3G + G on LxT (69)
Tkl 2 a (m,n) + (m,n)

kl 1k
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(rn,nl •
Dk 3 G(mn) on LxT (70)

•'n

in terms of the electric enthalpy function G of Eq. (59)

In the case of the linear constitutive equations (10) and
(11), the volume integrals (45) are evaluated in lieu of Eqs.
(37) and (38) with the result,

T (m,n) -C N (a,b)
kl klrt I(m+a , n+b)Srt

a+b- nb)r

N E (a,b)
- Crklz (m+a, n+b) r

ab0=

+ I1 N Nklrtpq F xs (c,d) (71)2 t +b0 c+d=0 rt pq

S1 Ck N N N r (arb) (c,d) 5  (e,f)6 Ilrtpquv Eb= c d 0 E f= rt pq uv
a+b=O c-'d=0 e-'f=Opq u

with
X = I •

(m+a+c, n+b+d), (m+a+c+e, n+b+d+f)

and

(mn) N (a,b)D C k ar b=I(m+a, n~b) S r

D (a,b)k klra+b0 (m+a' n+b) 1r

in terms of I of Eq. (5.8.
(m,n)

D o u n dl a ry C o n i t i s - The mechanical displace-
ments and the surface charge are prescibed on the surface
portion S d of the lateral surface of bar S1 and on the left

face boundary surface A1 , while the traction and the electric

potential are prescibed on the remaining portion S of S and-r 1
o:. the right face boundary surface A r, where Su=SSdUAI,

St=S =S UAr SUS =Sir A US UA =3B. As in the derivation of

the stress equations of motion and the charge equation of
electrostatics, by evaluating the surface integrals (41)-(43)
of the variational principle (34), the natural boundary

w m m m m m mm m m m m ( m m
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conditions are expressed for the tractions of order (m,n) by

*(,n) (me,n) (m ,n)
Pk - (P + R ' ) 0 on S xT (73)
k k k d

Tk -(T, +N3 k N) 0 on A xT (74)

for the surface charge of order (m,n) by

D(mn) D (m=n) = 0 on SdXT (75)

0* (rm,n) + D3 (m,n) = 0 on A1 XT (76)

for the mechanical displacements of order (m,n) by

*(m,n) (m,n) = 0 on S xT (77)

k k u

and for the electric potential of order (m,n) by

,*(mn)_ (m,n) = 0 on S xT (78)

Here, (tk and ý) and (uk and o ) are prescribed, since they

are the most commonly encountered in practice F7J.

I n i t i a 1 C o n d i t i o n s - By making use of Eq.
(17) and Eq. (46), one reads the initial conditions of
order (m,n) as

Uk (~n)* (m,n)

U (m'n) (x 3 ,t) - uk (x 3 ) = 0 on L(t) (79)

(mn) * (m,n)
Uk (x 3 ,t) - Wk (x 3 ) 3 0 on L(t) (80)

and

(mn) (x 3 ,t) - Y*(m,n) (x 3 ) 0 on L(t) (81

where uk' Wk and *s are given functions of x 3 .

Thus far, the one-dimensional, nonlinear equations of succes-
sively higher orders of approximation are consistently
developed for quartz bars on the basis of three-dimensional
theory of piezoelectricity. These governing equations of
order (m,n) consist of the electric potential and mechanical
displacement fields (46), the stress equations of motion
(62), the charge equation of electrostatics (63), the electric

field and strain distributions (65) and (67), the constitu-
tive equations (69) and (70) or (71) and (72), the natural
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boundary conditions (73) - (78) and the initial conditions
(79) - (81). The number of the governing equations is
infinite, that is, m+n=0,l,2,..., N=-, and hence the
equations are not formally determinate yet; they will be made-
deterministic in the next section.

;:-SPECIAL MOT'IONS

To obtain a deterministic system of nonlinear electroelastic
equations of quartz bar derived in the previous section,
these infinite number of equations with their infinite number
of unknowns must be consistently reduced to a finite number
of equations with their finite number of unknowns by a
process of series truncation. The process of truncation,
special motions of quartz bar, and especially the linearized
governing equations and the uniqueness in their sulotions
are taken up in this section. Further, the motions of
quartz bar with initial stresses are pointed out.

D e t e r m i n i s t i c B a r E q u a t i o n s - The
foregoing derivation of the governing equations of quartz
bar rests entirely on the fields of mechanical displacements
and electric potential, chosen a priori as a starting point
and representing them by thE pow.er series expansions (46) of

(inn) (m,n)
which the terms uk' and I are already taken to be

exist. Thus, the governing equations of order (M,N) is
iefined by either

m n, (m,n) (m,n)
" U x x I ,uk I (82a)

m=0n=O 1 2 k

or the series expansions (46) together with the condition

S(rn'n) =uk (m'n) = 0 for all mŽM+l, n N+l (82b)

and only the quantities involved in (82) are kept in the
esuations. In vie%' of Eqs. (82), there exists the 4(M+I).

(N+l) unknowns u, ,m, n) and j(m,n) and equations to solve them.

In addition to Eqs. (82), another type of deterministic
governing equations is simply defined by

•(m,n) (m,n)= umk = 0 for all (m+n)ŽN+1 (83)

where i is a positive integer. This obviously considers the
same weight for both of the lateral coordinates x1 and x 2 .
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Further, in both the definitions (82) and (83), by selecting
the positive integers M and N or only N for particular
applications, the governing equations incorporate as many
higher order effects as deemed necessary. Hence the customary
correction factors of bars are naturally abrogated C6].

S p e ý i a I M o t i o n s - Of the special motions of
quartz bar, the extensional motions [44], can be examined by
representing the electric potential and the mechanical
displacements as in Eq. (46) with the condition
u =u (x ,x,,t)z, 0. Also, in the case of low-frequency

a~ Z
extensional motions, it is appropriate to take the vanishing
boundary stresses on the lateral boundary surface S1 , and
hence all the vanishing stresses but T 33. The electrical

boundary conditions depend on the surface S,, and if the

edge boundary surfaces Se(=AIUAr) are fully electroded, the

boundary conditions become D,=O in Eqs. (75) and (57); this
will be reported later [45]. Moreover, the governing
equations of quartz bar can be specialized to study its
nonlinear torsional motions in the sense of Saint-Venant by
the use of the displacement field (46) together with the
condition [46]

(0,1) (1,0) (m,n) (3u xUu=xuU W (83a)

and

u (0,1) u2(1,0) - x3 (83b)

Here, W=w12 denotes the uniform rate of twist and Cmn is a

constant.

L i n e a r B a r E q u a t i o n s - Dropping out all the
terms involving nonlinearity, namely,

W (m,n) 0 (m'n) (m n)_ (mr,n)_ 0

"kl ' =k k N 3k

I I = 0 (84)
(m+a+c, n*b+d) (m+a+C+e, n+b+d+f)

in the macroscopic electroelastic equations of Section 5,
the fully linear governing equations of quartz bar are
obtained. They are the macroscopic equations of motion as

T- k(m'n- mT k(m-l, n)_nT (m, n-l) + Pk(m,n)
3k 1k 2k k
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-Ak(mn). - 0 on LxT (85)

the associated boundary conditions of tractions as

*(m,n) (m,n)
Pk - Pk 0 on SdxT (86)
Tk* (ml,n) _ Tk(m,n) 0 on A xT (87)

k T 3 k 1

the macroscopic charge equation of electrostatics (63), the
distribution of electric field (67) and that of strain by

(re,n) (re,n)
Skl m ekl (88)

the constitutive equations for the gross electric displace-
ments (72) and those for the stress resultants in the form

'xT

(m,n) =Z I ( (pq) E (pq)) (89
I p+,=0 (m+p, n+q) klrt rt rkl r

the boundary conditions of surface charge (75) and (76),
those of mechanical displacements (77) and those of electric
potential (78), and the initial conditions (79)-(81). The
linear coverning equations of quartz bar recover those by
t'-e auhor _'7!, who has employed a semi-variational approa-.h
in his derivation.

U n i q u e n e s s o f S o 1 u t i o n s - The solutions
of an initial mixed-boundary value problem defined by the
one-dimensional linear governing equations of quartz bar are
shown to be uni_,uue by means of the logarithmic convexity

ariuments i To establish this, as usual, the existence of

tw..o solutions arising from the same date dk(1) and k(2) is

summosed_ and the difference solution dk(:dk( 1k-dk( 2 ) is

:onsidered. The difference solution, that is, as before,
(1 ) ()k ) and = -1 _ 2 ) evidently satisfies the

.qgeneous parts of the governing equations by virtue of
te linearity of these equations. Accordingly, it suffices
to show that the difference solution is trivial for the
h.onoqeneous governing equati.-ns in proving the uniqueness
of solutions. The treatment of uniqueness begins by defining
tne function F(t) by

•(t) log F(t), tT (90a)
1

F(t) = -2 - x r , U d A T kT<t<T (90b)
L A
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F(t) = t , t o .to1, 1 ] and t 'T 2 ,tlI (90c)

Here, Eq. (90c) clearly implies the uniqueness for all t•T
but tEKTIT 2 1; F(t) can be chosen, without loss of genera-

lity, as in this equation. Thus, only the interval
S=(iT T2 ) is considered on which F(t) is positive by defini-
tion, and this function should satisfy the condition of the
form

.2
F?=FF 20 T <t<T (91)

for the convexity of3=(t).

Now, the kinetic energy K, the internal energy W and the
total energy 2 per unit length of the quartz bar are calcu-
lated in the form

N -U1(mn) Uk(m,n) (92)
K 1 f- .uu u'Z P6(2

2 Akk 2 m+n=0 k k

A
12 •(KeI Ekmk)dA T1 cT k((m'n)uk (me,n)

"(in-i , n) + nT (2in(, n-1) )Uk (m,n)
+ (mTlk nT2n (u -

"+ D3(m,n (m,n) + (mD1 m-I~n)nD nl)) 1n (93)

(94)
-= K + W

where the series expansions (46), the definitions (48), (53),
(55) and (56) and the distributions (67) and (88) are used.
Likewise, Eq. (90b) is evaluated with the result

1 N (m,n) (m,n)
F (t)u kZ Uk (mnd (95)

L m+n=0
in the interval T. Then, time differentiations of this
equation, by assuming the usual smoothness of functions,
lead to

N (mn) (mn)
P(t) =;DZ Uk uk dx (96)

and L m+n=0

tiK ~ (m,n) u(in n))d(t) = L(2K +pZ Ak uk )dx3 (97)
L m+n= 0
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in which Eqs. (53) and (92) are used. With the help of the
homogeneous part of Eq. (85), Eq. (97) is expressed in the
form

F (t) =j[ 2K +Z (T (m,n) - mTl, n)

L m+n:03

- nTk (m, n-l)+ pkn(m,n) (m,n)]dx3 (98)

Then, on combining Eqs. (93) and (94) and integrating by
parts, Eq. (98) takes the form

F (t) = -2W + : 4Kdx 3 + F + X (99)

with L

N (m,n) (m,n) (m,n) (m,n) I
=7 (Ts k + D3 $ ) 3=0 (100)

m+n=0

X ( (m,n) u (m,n) +D(m,n) (D m,n) d(1 )
.L (mkn) ( D nk)d (101)
Lm+n=0

where Eq. (63) is taken into account. By the conservation
of energy and the initial conditions (79)-(81), the total
energy - is e-Tual to zero. Besides, the boundary conditions
(75)-(73), (86) and (37) render r and X to zero, and then Eq.
(99) becomes

t (t) r 4 K1x3 (102)
L

In view of Ecs. (95) , (96) an" (102), one writes the right
of Eq. (91) as

2,.= 2 " (m,n) k(mn) (m,n) (m, n)
Fv .~ [u,1 I- u k dx3L m+r kk

N (m,n) (mn)dx 2
([: Z Uud (103)

L Mre n=0 k

By virtue of Schwartz's inequality, one finds

F ý- 0 (104)

on the interval T, and after integration, this implies

F(t)-<[ )] 2 2 1 1 F( T2)] t /T 1  on 1 (105)

Due to the continuity of F(t), F( 1)=$, Eq. (105) shows

that F(t)=0 for the interval T as well, contrary to the
initial hypothesis F(t)>O. Hence F(t)=0 for all tET, and
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the difference solution is trivial, that is, the uniqueness
is established as in the case of polar rods, [48] A tLn-or-oi of
uniqueness is concluded as follows.

T h e o r e m - Given a regular region of finite bar space
B+3B with its boundary surface ýB(=S tUSU=S US,

S t•Su=SfS =•) in the Euclidean 3-Space E, then there exists
t Ua

at most one set of twice continuously differentiable

functions uk (m,n)and D(m,n) in B+3B at the time interval T,
obeying Eqs. (63), (67), (89), (72), (88) and (89), and
satisfying the boundary conditions (75)-(78), (86) and (87)
and the initial conditions (79)-(81).

Quartz Bar With Initial
S t r e s s e s - In the xk- fixed system of Cartesian

convected coordinates, consider the piezoelectric medium
B+3B with its boundary surface 3B and closure B. The medium
is under initial stresses in its reference (initial) state
which is considered to be self-equilibrating following load-
inc in the natural state of medium. Then a small motion
is superimposed upon the reference state. For this motion,
the set of fundamental equations is consist of the stress
equations of motion (1) and the boundary conditions of
trzctions (13) ;ith the condition [49,50]

o0 in BxT (106)
kl =krUl,r

or

kl krulr),k - POa 1 = 0 in BxT (107)

* 0
- n ( 1k +TlrUk,r) = 0 on StxT (108)

the charge equation of electrostatics (3), the strain-mechan-
izal disolacement relations:

Sk = ekl = 2 (l,k + Ul,k in BxT (109)

tne electric field-electric potential relations (6), the
constitutive relations

*Tkl =Ckl nmn - CmklEM (110)

and Eq. (11) , the boundary conditions of dislacements,
surface charge and electric potential (14)-(16) and the
initial conditions (17) in the spatial (final) state.
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In the above equations; ,rkl' uk, a k and so on indicate small

incremental quantities superimposed upon those of the refer-
0 0 0ence state denoted (o) such as (Tklukt t. The incremen-

kk
tal components of displacements uk and the electric potential

are represented by the series expansions (46). By parallel-
ing to the derivation in Section 5, the macroscopic
equations of thin quartz bar with initial stresses may be
established by means of a variational principle E287 and the
series expansions (46) as

T (m,n) mT (m-1, n) (m, n-i) (m,n)

3k 1k 2k k

+ No(m,n) ÷ Ro(m,n)- PA (m,n) 0 0 on LxTk k k
Tk*(m,n) _ (T (m,n) + Nko (mn)) = 0 on A xT (111)

k 3 k 3 k 1

with the definitions (48) and (50)-(52) in terms of the
incremental quantities, and alike [51].

7- CONCLUSION

The main result presented herein is a set of one-dimensional,
nonlinear electroelastic equations useful for analyzing wave
propagantion and vibrations in quartz bars. These governing
equations of successively higher orders of approximation are
deduced from the three-dimensional theory of piezoelectricity
by a consistent method of reduction. That is, the variation-
al principle (34) together with the series expansions (46)
is used to derive the governing equations of quartz bar in
which account is taken of only the elastic nonlinearities.
The resulting equations incorporate as many higher order
effects as deemed necessary in any case of interest by the
proper truncation of the series expansions. Thus, the
customary use of matching coefficients [6] is eliminated in
a rational way. The nonlinear electroelastic equations
describe all the higher order stretching, flexure and torsion
of thin piezoelectric bars of uniform cross-section. Further,
they are easily seen to reduce to the dynamic equations of
bars by Mindlin [6,52], Bleustein and Stanley [53], and the
author [7,8,51,54], as well as several authors mentioned by
them.
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The variational principle (33) is obtained from Hamilton's
principle by modifying it through Friedrichs's transforma-
tion. As its Euler equations, the principle leads to all
the fundamental equations of piezoelectricity but the
initial conditions. By dropping out the nonlinear elastic
terms, the variational principle can be specialized to
contain some of earlier variational principles [1,6,25,29,30,
32,33,39,55,56]. The principle permits simultaneous
approximation on all the field variables, and hence it is
most frequently desirable and compulsory in selecting the
trial functions of approximate direct solutions [34,35,45].
Further, special motions are pointed out, the linearized
governing equations and the electroelastic equations in the
presence of initial stresses are recorded for the quartz
bar of uniform cross-section. The uniqueness is examined in
solutions of the initial mixed-boundary value problem defined
by the linearized governing equations, and the sufficient
conditions for the uniqueness are enumerated by means of the
logarithmic convexity arguments. It is worth noting that
the uniqueness is established even though elasticities
neither possess major symmetry (12) nor satisfy a
definiteness condition of energies [47, 56].

In closing, the results presented herein can be readily
extended to the case in which the thermal effect [57-60],
and/or the mechanical effect of the electrode coating [8],
are taken into account. Likewise, for a piezoelectric bar
with temperature-dependent properties [61], the nonlinear
electroelastic equations of higher orders of approximation
can be formulated. Further, it is worthwhile to conclude
the paper that work [45], is now in progress for certain
vibrations of quartz bar, and it will be reported elsewhere.
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CHAPTER 4
VIBRATIONS OF PIEZOELECTRIC DISCS

UNDER INITIAL STRESSES

ABSTRACT

A system of two-dimensional equations is derived to govern
high frequency motions of piezoelectric discs (plates)
under initial stresses. The approximate governing equations
are deduced from a three dimensional quasi-variational
principle of piezoelectricity by expanding the electric
potential and the incremental components of mechanical
displacement in a series of Jacobi's polynomials. These
equations in an invariant form are applicable to all the
types of extensional, flexural and torsional motions of
piezoelectric strained discs. Besides, t• ey incorporate as
many higher order effects as deemed necessary in any case
of interest by a proper truncation of the series. Further,
some special cases, and in particular, the case of
piezoelectric unstrained discs and the uniqueness for its
solutions are indicated.

Key Words: piezoelectricity, quasi-variational principles,
plate vibrations, initial stresses, discs.

i- INTRODUCTION

The mathematical modelling of the dynamic response of
piezoelectric plates was extensively studied in the litera-
ture , and it was reviewed by several authors (e.g.,[l-3j).
Most recently, Gerber and Ballato [4] provided almost a
complete list of pertinent puplications dealing with
dynamic problems of the piezoelectric elements. In view
of these, it appears that the application of initial
stresses or strains may be utilized to control the perform-
ance of certain piezoelectric devices. However, the
effect of initial stresses in piezoelectric elements was
treated only in a few particular cases. Especially, the
propagation of surface acoustic waves was investigated
both analytically and experimentally in a piezoelectric
continuum with initial stresses [5,6]. In addition, a
quasi-variational principle was recently derived to govern
the motions of piezoelectric strained continua [7]. Now,
an attempt is made to develop consistently the two-
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dimensional equations in an invariant form, of successively
higher orders of approximation for piezoelectric strained
discs of any geometrical shape.

The presence of initial stresses or strains may significantly
change the static and dynamic behavior of structures
(e.g., 8,9]). Revealing this fact, Thurston [10i studied the

wave propagation in stressed crystals under hydrostatic
pressure. Herrmann and Armenakas [11] investigated the
vibrations and stability of elastic plates under initial
stresses. Further, Lee and his colleagues (e.g.,[12,13)
treated the high-frequency vibrations of crystal plates so
as to predict changes in the resonant frequencies due to
initial stresses. Additional references dealing with the
effect of initial stresses in plates were compiled by the
author [14j . Moreover, in the absence of initial stresses,
one should mention the recent works of Bogy and his students
[15,16], Karlash [17], Zaretskii-Feoktistov [18. , Baboux
and his colleagues [19: and Pan-fu [20] for various problems
of piezoelectric discs. As for piezoelectric plates or
discs with initial stresses, this is precisely the topic of
this paper.

In this paper, the method of reduction due to Mindlin [217
is applied to derive a system of two-dimensional governing
equations of piezoelectric plates (discs) under initial
stresses. In the first stage, the three-dimensional differ-
ential equations of piezoelectric strained continua are
expressed by means of a quasi-variational principle [7'
Then, the geometry of a piezoelectric disc is described,
certain regularity assumptions are introduced, and the
electric potential and the incremental components of disc
are expanded in a series of Jacobi's polynomials. Also,
the higher orders components of stress, electric displacements
and surface loads are defined in consistent with the series
expansions. In the next staae, the governing equations of
piezoelectric strained discs are consistently and systemat-
ically formulated by using the quasi-variational principle
together with the series expansions of field quantities.
The governing equations incorporate as many higher order
effects as deemed desirable, and they take into account for
the coupling between extensional, flexural and torsional
modes. Lastly, special cases and in particular, the case of
piezoelectric unstrained discs are pointed out, and the
results are briefly discussed.
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NOTATION

In the paper, standard tensor notation is used in a
Euclidean 3-space. Accordingly, Einstein's summation
convention is implied for all repeated Latin indices (1,2,3)
and Greek indices (1,2). Superposed dots are assigned for
time differentiations, primes for partial differentiations
with respect to the thickness coordinate x 3 , and commas and
semicolons for partial and covariant differentiations with
respect to space coordinates, respectively. Further, a
piezoelectric region B with its boundary surface
B(-St US U=S dUS) is referred to by a fixed, right-handed

system of curvilinear coordinates xk in the space. The
symbol B(t) refers to the region B at time t and nk to the
unit outward vector normal to ýB. Asterisks are used to
indicate prescribed quantities. The time interval is
denoted by T=Eto,tI) and the thickness interval by H=[-h,h].

2- THREE-DIMENSIONAL EQUATIONS OF PIEZOELECTRICITY

The three-dimensional fundamental equations to govern the
motions of a piezoelectric strained continuum aresummarized
in differential form as follows Li,9,5,6].

Divergence Equations:

Tij;1 -bj =0 ; TiJ=7ikuj;k +J_ i(1j
0

D ; i =0 (2)

Gradient Equations

S 1 .() (3)Sij= •(i;j~u3;i

E i=-t. ,(4)

Constitutive Equations
iJcijkskl- CkEk (5)

Di= cijks k.'CiE (6)
jk j
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Boundary Conditions

Tj- niTiJ on S (7)

u - u =0 on S (8)1 1 u
* n Dni=. 0 on Sd (9)

*- on S (10)
p

Initial Conditions

u *' 0) * jx )=

u. (xt 0)-W . (x )=0
-(x * j II
-,t )-• (x)=0 in B(t0 0

In the above equations, T i- is the stress tensor, u. the
incremental displacement vector, p the mass density,
bj (=U'j) the acceleration vector, aoiJ and uiJ the
initial and incremental stress tensors, Di the electric
displacement vector, Ei the quasi-static electric field
vector, the electric potential, Sij the incremental strain
tensor, Ti(=n i7]) the stress vector and u(=niDi) the
surface charge. Also, Cijkl, cijk and Ci] denote the elas-
tic, piezoelectric and dielectric material constants with
their usual symetry properties in the form

ijkl= iklk iJ ,ciJ kcikj c ji (12)

3- A t'iUASI-VA?+IATIO2UAL PRINCIPLE

The fundamental differential equations (I)-(11) can be
alternatively expressed by means of a quasi-variational
principle in the form.

+ _t + : + 6+ N L 0 (13)
DL C C CL

I : d t k iV(-k + ) ; i - pbj 6u.dVST 'B o '

+t [jTni (i.kuJ ;k+o'j)],5udS } (14)
t
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1 d t' - -D ;6i dv +f (n D -T )ýPdS} (15)
T B 'i Sd i

6j =f dt [sij u +u )] 6TijdV (16I -T t B[i 2 i;j uj;i

6j2 =T dt! - (Ei +,i 6Di dV (17)
2 T 'B i ,i

cijkls -kiJk
6L 'T dt B[ciJ-( ki E )]6SdV (18)

i k i k J i d
:T dt B[Di-(ciSjk+C Eij)]6 EidV (19)

,1 * I

ýK dtsu - ui)6T ds 20
IU

u
TK SC dt (0

S*T dtS ($ -4)6adS (21)2 p

and
I B = 1 [1 0(xito)- (xj)]5ui(x3,t

_N I B L 0 ii 0
6u (x t0 )} dV (22)

B -- ['(X3,to)-,P (x3)bt)(x ,to)dV 23

The quasi-variational principle (12) is fully unconstrained,
and it evidently leads to all the fundamental differential
equations of piezoelectricity (1)-(12) as the appropriate
Euler-Lagrange equations; and conversely, if the fundamental
differential equations are met, the quasi-variational
principle is clearly satisfied. This principle is recently
deduced from Hamilton's principle by the author [7], and it
can be similarly obtained from the principle of virtual work
as will be reported in a forthcoming communication.

4- GEOMETRY OF A PIEZOELECTRIC DISC

Consider a piezoelectric disc of any geometrical shape,
embedded in the Euclidean 3-space. The piezoelectric disc
of thickness {h is referred to the system of curvilinear
coordinates x , with the faces, of area A, at x 3 =-'h and with
x' the coordinates on the midplane which intersects the

t
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right cylindrical boundary of the disc in Jordan curve C.
The disc is coated with perfectly conducting electrodes
on both its faces. Further, one should recall the
fundamental assumption of the form

(2h/d)<<l (24)

where d is a characteristic length of disc. This allows
one to treat the disc (plate) as a two-dimensional mathemat-
ical model of a three-dimensional body.

@x
X CK

IG

Figure 1. Disc geometry

5- SERIES CF ELECTRIC POTENTIAL AND INCREMENTAL DISPLACEMENTS

The fundamental assumption (24) and the absence of any kind
of singularities as well as the suitable regularity and
smoothness assumptions are considered for the piezoelectric
disc region B+3B. In addition, all the field functions
together with their derivatives are assumed to exist and to
Ie continuous in the closure of disc B(=BU3B), and not to
vary widely across the disc thickness. Thus, the electric
potential and the incremental components of displacements
of r1i - poreae.imated by a series in the thickness
coordinate as

3:) 3 (n)u (x (x )u (x 't), (25)
n=0

*J= 3(x3 t)- Z Pn(X3) ( (X',t) (26)
nO n 

n(
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Here, the functions Q. and P,. are consistently chosen
as Jacobi's polynomials [22,23] in the form

Qi = P =J (x 3) (27)
n n n

with

2 3 3
J (z)=l,z, l-2z , z -2 z ,...• (28)

The choice of Eqs. (25)-(27) as a starting point leads
to the governing equations of piezoelectric disc in a
consistent and tractable manner; this will be shown below.
Moreover, in lieu of Jacobi's polynomials, Legendre's
polynomials, power series and trigonometric series can be
similarly chosen [1-3]. The present choice, however, is
more fruitful in the case of circular and elliptical discs.

6- HIGHER ORDER COMPONENTS OF STRESS AND ELECTRIC
DISPLACEMENTS AND SURFACE LOADS

In accordance with the foregoing assumptions and the series
expansions (25)-(27), the two-dimensional stress and
electric displacement components and surface loads of order
n in the form

[TalD'D Nj ,D3  H D')J ; (a 3 J'D 3 )J ]dx3

(n) (n) (n) (n) n n

[Ti T' 3 i a3- 3
o(m+n) o (m+n) =:H (o mn'ox

3 [ ,3a 33- 3[No (m+n)' 0o(m+n)] 'H 1 m,° am

[FC F 3 3a m 33 3-'
Fo(m+n)' o(m+n) : (o 0m mo ] )n] H

[ n) ,G(n)]:[( 5
3 j,D 3 ) n] H

[T , D, ]=11[{ (T G,* )]ndx 3 (29)-(32)

(n) (n)

a nd

(irmp Imn ) =fH(JmJmJn)dX3  (33)

are defined.
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7- IllMER ORDL;R, EQUATIONS OF MOTION AND ASSOCIATED NATURAL
TRACTION BOUNDARY CONDITIONS

To derive the higher order equations of motion of piezoelec-
tric strained disc, the variational integral (14) is
splitted into the area integral over the midplane A and
the integral across the thickness, namely,

ik ij i ] 36 1 kuT dt+f dA k ( (1) ; b ku jdx3I=Td{A dAHV(OU; k

+ cds.'H[T-n (aij +aioku; k)]6u, dx 3 } (34)

Here, the tractions are taken to be prescribed on the edge
boundary surface of disc, and accordingly, the displacements
are specified on the faces. Following the method of
reduction as in [212, the series expansions of incremental
displacement components (25)-(27) are inserted into Eq.(34),
and it is integrated with respect to the thickness coordi-
nate. Then, using the two-dimensional divergence theorem
and regrouping the higher order components of stress and
surface loads, one obtains

IN ( )*j in)

STdt n=O A nJ 6un dA" C Xn )u. dx} (35)

This equation leads to the equations of motion and the
natural boundary conditions, of order n for arbitrary and
independent variations 6u i(n) in the quasi-variational
equation (13). Thus, the equations of motion of order n
are expressed by

N - S3 j]=J -NJ+FJ+E (Tomn)Um+ TomT un n;ac n n mO o(m+n) m;a o(m+n) m
N N

j .ý43 j aN
2(Nt u +N u )+ E (F u

m=0 o(m+n) m;a "o(m+n) m m=O °(m+n) Um;a

N
+ F u3 )-p z I Uj=0; n=l,2,...,N on A (36)

o(m+n) m M-0 mn m

Besides, the natural boundary conditions of order n are
written in the form

N a j a3 u*JT-n [TJ+ Z (To u~+
n n a n m=0 o(m+n) m(i) ;+T o(m+n) (m)
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n=l,2,...,N along C (37)

8- HIGHER ORDER, EQUATIONS OF ELECTROSTATICS AND ASSOCIATED
NATURAL BOUNDARY CONDITIONS OF SURFACE CHARGE

By paralelling to the derivation above, the variational
integral (15) is evaluated, the definitions of Eqs. (29)-(32)
are used, and then the equations of electrostatics of order
n are expressed by

Y =Da +G -D =0; n=l,2,...,N on A (38)
n (n);a (n) (n)

and the natural boundary conditions of surface charge of
order n by

Y =D - n D =0; n=l,2,...,N along C (39)
n (n) 0. (n)

where the surface charges are taken to be prescribed only
on the edge boundary of disc.

9- HIGNER ORDER, DISPLACEMENT AND ELECTRIC POTENTIAL BOUNDARY
CON;DITIONS

The electric potential and the mechanical displacements are
considered to be given on the faces. Accordingly, the
variational integrals (20) and (21) are carried out on A.
Then, the n-th order boundary conditions of displacements
are obtained as

*(n)u(n)-u =0; n=l,2,...,N on A (40)
1 1

and those of electric potential as

(n)_ = (n) 0; n=l,2,...,N on A (41)

10- DISTRIBUTIONS OF INCREMENTAL STRAIN AND ELECTRIC FIELD

By inserting the series expansions (25)-(27) into the
variational equations (16) and (17), and then integrating
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with respect to the thickness coordinate and using the
higher or..er components of stress and electric displacements,
one readilv arrives at the distributions of incremental
strain and those of electric field in the form

N ( )

(S , ,S ,;E ,E 3 ) z (S i n n
: c• n=O as a

a5c 3n' 33 ] ;Ea n%,E 3  ) (42)
s(n)_ 1 (n) (n) (n) (n) (n)

+- - f 3u 3 in ); SC n' S S

S(n) 1 (n) + (n) 1 n (u (43)

(n _(n) , : - u ; s(n) (n)
S2 % CCi 2 3;C S 33 3

and
(n) : _ (n) (n) =- (n)
a ,L , 3 (44)

are introduced.

11- MA-RCIIOPIC CONSTITUTIVE EQUATIONS

"Vith the help of the distributions of electric field and
incremental strain (42)-(44), the variational equations
(13) and (19) are evaluated and hence the macroscopic
constitutive equations of order n are obtained as follows.

-i N - (-I] .(M) Cajs3 (Mn) ajB3 (in)
(n L (m +2(B S +A S (45)

n . m+n my m+n B m+n 21

SB 3 S 3(m) A (haj E(m) + B 31j E(m))]
mmn 3 m-n B m+n

- N rB3j3ys(m) +2 (c3jS3 (m) 53j 3 S(m)
nm y+Cm+h S + B S ) (46)

(n) m=Ln+m m7 n B n+m qi

ScJ33?s(m)_ (BA3j E (m)+ 33j E-(M))
m+n 3 n+m Ct +m+n3

N 2 [Aa-Y s(m) +2(BCLE 3 
5 (m) +A(B3 S(m)

(n) m+n Fy m+n SB m+n S1

+ B a3 3 m (M) + (A E(m)+ B(
m+n m+n s m+n

p i. . . . .. . . ... ..
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NBAY'( S(M) 2 (C33Sm)+B33 S (M)
(n) M n~m 3y m-n P nm S

+C_3 m n )+(B3 n E m)+C3 n'(48)
mt-n .3 n+m 8 m+n3

where the higher order components of material constants are
defined by

(Al'*' Bi ) =r (Ci''J J ,Ci' JJ )dx 3
minn m+n H m n m n

(Ci''')=f (Ci'.'JJJ" )dx 3  (49)
m~n H m n

12- HIGI:ER ORDER INITIAL CONDITIONS

As before, the variational equation (23) is evaluated, and
the initial conditions of displacements and electric
potential of order n are expressed by

u(n) (xa , t _v*(n) (x )=

*(n ~ * (n) xa
. (x a,t )-w. (x )=0 (50)
1 1

S(n) t *(n) x(
*(n)Z, to n) - • ( n):

were (n) n) and '*(n) are the given functions of
incremental displacements and electric potentials at time
t=t

0

13- _ >ERpI(; E.<ATIONS OF PIEZOELECTRIC STRAINED DISCS

The system of two-dimensional equations of piezoelectric
discs (plates) under initial stresses consists of the series
expansions of incremental strain and electric potential (25)-
(27), the higher order equations of motion and elecrostatics
(36) and (38), the associated natural boundary conditions
(37) and (39)-(41), the distributions of incremental strain
and electric field (42)-(44), the macroscopic constitutive
equations (45)-(48) and the natural initial conditions (50)
and (51) .
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14- SPECIAL CASE'S

T:ie approximate, successively higher orders governing
equations of piezoelectric strained discs are forriulated in
an invariant form, and hence they are readily applicable
to an arbitrarily shaped disc using a particular coordinate
system most suitable for its geometrical configuration.
Among those, the resulting equations for a circular discs
can be given by using the system of polar coordinates,
that is, xl=r , x 2 =- and x 3 =z. Likewise, the system of
elliptical coordinates can be selected for an elliptical
disc under initial stresses.

In the absence of initial stresses, the two-dimensional
equations derived may be reduced to those of piezoelectric
unstrained discs. These linear governing equations
accommodate high frequency motions of a piezoelectric plate
(disc), and have a unique solution in each case of interest.
The boundary and initial conditions (37) and (39)-(41)
which now exclude the terms involving initial stresses and
hence become linear are sufficient for the uniqueness.
To prove this, utilizing the technique due to Knops and Payne
[24] and following the author'L25], the existence of two
possible solutions is considered and the homogeneous
governing equations are formed for the difference of solu-
tions. Then, a logarithmic function is introduced, and it
is calculated in terms of the field quantities of disc. By
using the convexity of the function and Schwartz's inequal-
ity, it is shown that the homogneous problem may possess
only a trivial solution. Accordingly, the linearized
version of the initial and boundary conditions (37)-(41) are
found to be sufficient for the uniqueness F26].

15- CORECLEDING REMARKS

Presented herein is the system of two-dimensional equations
of successively higher orders of approximation for all the
types of extensional, flexural and torsional motions of
piezoelectric discs (plates) under initial stresses. These
governing equations are systematically and consistently
deduced from the three-dimensional equations of piezoelec-
tricity by means of a quasi-variational principle together
with the series expansions of the field quantities. The
effects of elastic stiffeness and inertia of electrodes are
omitted, but those of shear and normal strains, full
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anisotropy and heterogeneity are all taken into account.
Then, some special cases, and in particular, the case of
unstrained piezoelectric disc and the uniqueness for its
solution are pointed out. In closing, the case of circular
discs with and without initial stresses is reported in the
reference [27], and the detailed analyses of certain motions
of strained elliptical discs and the extension of the
present results to those of composite discs with initial
stresses will be studied in a forthcoming memoir.
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CHAPTER 5

SHELL THEORY FOR VIBRATIONS OF PIEZOCERAMICS
UNDER A BIAS

ABSTRACT

This paper is addressed to a consistent derivation of the
shell theory in invariant form for the dynamic fields super-
posed on a static bias of piezoceramics. In the first part
of the paper, the fundamental equations of piezoelectric me-
dia under a static bias are expressed by the Euler-Lagrange
equations of a unified variational principle. The varia-
tional principle is deduced from the principle of virtual work
by augmenting it through Friedrichs's tranformation. In the
second part, a set of two-dimensional, approximate equations
of thin elastic piezoceramics is systematically derived by
means of the variational principle together with a linear
representation of field variables in the thickness coordi-
nate. The two-dimensional electroelastic equations accounting
for the influence of mechanical biasing stresses accomodate
all the types of incremental motions of a polarized ceramic
shell coated with very thin elecrodes. In the third part,
emphasis is placed on special motions, geometry and material
of piezoceramic shell. Especially, attention is confined
to the linearized electroelastic equations of piezoceramic
shell, and the uniqueness in their solutions is established
by the sufficient boundary and initial conditions.

"- INTRODUCTION

PIEZOCERAMICS are a class of synthetic materials made of
anisotropic crystalline powders by pressing, casting, or ex-
trusion, and sintering, and then by prepolarizing under a
strong electric field. This poling process induces the
piezoelectric properties in ceramics; this is analogous to
the magnetizing of magnets or the polarizing of electrets.
The piezoceramic materials are chemically as well as physi-
cally stable and robust, insensitive to aging and, in par-
ticular, potentially low cost. They can be manufactured in
"a wide range of compositions with desirable properties and
"a variety of advantages shapes and sizes, as the structural
elements of acoustic devices. The characterictics and ap-
plications of piezoceramics, including the elastic and piezo-
electric constants, are availeble CI]-C51. Owing to their
specific features piezoceramic elements and especially, those
elements in the shape of thin shells are quickly replacing
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natural piezoelectric elements in recent commercial applica-
tions. A review of recent contributions on the dynamic app-
lications of piezoelectric and piezoceramic elements can be
found [6], [7]

In acoustic devices, biasing stress or strain and/or elec-
tric field is a new design feature, and their introduction
may be effectively utilized to control the performance of
piezoelements, and to select the most suitable operating
conditions, in these devices. The presence of a biasing
state induced by external perturbations like thermal, mechan-
ical and electical fields and even magnetic fields can sig-
nificantly affect the static and dynamic behavior of struc-
tural elements (for instance, beams [8], [9], plates [10]-
[12] and shells [13], [14]) and the characteristics of BAW
and SAW [15]- [19]. In an initially unbiased solid medium,
the linear theory of electroelasticity provides an extremely
accurate description of waves and vibrations with small am-
plitudes. However, in a solid medium with induced external
perturbations and/or intrinsic nonlinearities, the linear
theory becomes unsatisfactory in describing its motions.
This fact was widely recognized, and tackled by many inves-
tigators in elasticity (for instance, [20]- [22]) and elec-
troelasticity [23]- [26]. In elasticity, the fundamental
differential equations of incremental motions were established
and their various applications were exhibited [26]- [28].
These equations make available an invaluable tool in inves-
tigating the stability of initial deformations of a solid
medium. In electroelasticity, Tiersten [24] derived a prop-
erly invariant set of the nonlinear differential equations
including thermal effects by means of a systematic applica-
tion of the fundamental axioms of continuum physics. From
these general equations, Baumhauer and Tiersten [29]- [31]
obtained the differential electroelastic equations for small
dynamic fields superposed on a static biasing state of solid
medium, and also, for intrinsically nonlinear fields. More-
over, the fundamental equations of incremental motions were
expressed as the Euler-Lagrange equations of variational
principles in elasticity [32], [33] and, in piezoelectricity
[34]- [36]. A clear and elaborate axposition of the subject
was presented by Truesdell and Noll [37], Thurston [26] and
Bolotin [27].

To reveal the effect of biasing states on the characteris-
tics of vibrations and waves in elastic media, many investi-
gators considered the effect due to the electrode-induced
thermal stresses, mounting and acceleration stresses, as
well as stresses resulting from the externally applied for-
ces and pressures [38]-[49] and [6], [7] with a list of
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extensive references on the subject. In their pioneering
works, Truesdell [38], Toupin and Bernstein [21], Thurston
[39]-[41] and Brugger [41] treated some small-amplitude wave
propagations in finitely strained elastic materials.
Nalamwar and Epstein [42] reported the propagation character-
istics of SAW in a strained piezoelectric medium, including
the experimental and computed results. Also, the influence
of temperature-induced biasing strains [43], of flexural
biasing stresses [44], and of biasing electric field [45]
was investigated on the propagation characteristics. Sinha,
Tanski, Lukaszek and Ballato [18] described some analytical
and experimental results on the extensional and flexural
stress-induced effects on the propagation of piezoelectric
surface waves in crystalline quartz. The author [46] dealt
with high-frequency motions of piezoelectric plates under
initial stresses, and he and nanI'D. [47] with dynamics of
piezoelectric strained rods. Yet an investigation concerning
incremental motions of piezoelectric ceramic shell under a
bias is unavailable in the current open literature; this is
precisely the topic of this paper.

Studies concerning the dynamic analysis of piezoceramic shell
were devoted either to solutions of their specific motions
or to derivations of their two-dimensional, approximate
electroelastic equations. Of the former, the radial, flexu-
ral and torsional vibrations as well as the propagations of
axisymmetric and non-axisymmetric waves were investigated
both analytically and experimentally in spherical and cylin-
drical thin shells with electroded or unelectroded surfaces,
polarized in an axial, radial or circumferential direction
and driven electrically or mechanically [48]-[57]. The
analytical treatment of radial motions includes a piezoce-
ramic hollow sphere [48], a piezoelectric sphere coated
with electrodes on its surface in a compressible fluid [49],
and a piezoceramic hollow sphere or cylinder filled with a
compressible liquid and immersed within a fluid of infinite
extent [50]. The numerical analysis of harmonic vibrations
of a piezoceramic shell of revolution, coated with elec-
trodes on its outer and inner surfaces was reported [51].
The propagation of axisymmetric and non-axisymmetric waves
was considered in a piezoceramic hollow cylinder with radial
and axial polarizations [52]-[54]. The interaction effects
of the radiation load and various modes of vibrations of a
piezoceramic cylindrical shell were examined for the case
when the shell with thickness polarization is partially in
contact with an acoustic medium and surrounded by a soft
shield [55]_. Various types of vibrations of a piezoceramic
hollow cylinder were studied by Paul and Venkatesan [56],
and Matrosov and Ustinov [57] who cited additional works for
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special motions of piezoceramic shells.

Derivations of two-dimensional equations of piezoelectric
and piezoceramic shells were reported by a number of inves-
tigators [58]-[79]. These governing equations of shells
were immensely more tractable than the three-dimensional
equations of piezoelectricity, and hence, they are prevalent
by computational economy. The fundamental equations of pie-
zoelectricity were reduced to the equations of piezoceramic
shells by means of a method of reduction that involves an
averaging procedure across the thickness and a set of series
expansions for the field variables in terms of the thickness
coordinate of shell. Of the methods of reduction [80], the
method of symbolic integration [58], the asymptotic method
[59] and especially the variational method [60]-[62] were
applied together with the power series expansions L63], [64]
and the series of Legendre and Jacobi polynomials [64 -[66].
In a noteworthy earlier attempt, Toupin [67] formulated the
piezoelectric relations and equations of equilibrium for
a polarized elastic spherical shell. Within the
context of thin elastic shells [81], a theory was developed
for vibrations of piezoelectric ceramic shells of revolution
[68], [69], radially and tangentially polarized piezoceramic
thin shells [70], [71] and viscoelastic piezoceramic shells,
including the effect of temperature [72]. Chau [62], [73]
dealt with a theory of piezoelectric and piezoceramic shells
and Khoma [61], [66] with that of piezoelectric and thermo-
piezoelectric shells. Kudryavtsev, Parton and Senik [74],
[75] derived a refined theory of piezoelectric ceramic shells
that takes into account shear strains, as did Rudnitskii and
Shul'ga [76]. By use of Mindlin's variational method [82],
E83], the author [60], [63], [65], [77]-[79] established a
theory of various types of low and high frequency as well as
linear and nonlinear vibrations of piezoelectric and piezo-
ceramic shells and thermopiezoelectric laminae, including
the sufficient conditions for the uniqueness in its solutims.
Besides, a theory of piezoelectric membranes was obtained as
the special case of a shell theory where account was taken
of electro-magnetic effect [64]. A survey of various theo-
ries and problems of piezoceramic shells, together with an
update list of references, was compiled [6], [7].

The objective of this paper is (i) to express the fundamen-
tal equations of piezoelectric medium under a mechanical
bias by the Euler-Lagrange equations of a unified variation-
al principle, by use of this principle together with a lin-
ear representation of field variables; (ii) to establish a
two-dimensional theory for the motions of polarized ceramic
shells coated with thin electrodes, accounting for the
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influence of mechanical bias; and then, (iii) to consider
special cases and, in particular, the linearized equations
of piezoceramic shells and to examine the uniqueness in their
solutions.

In the remainder of this section, the content of the paper
is specifically given, and then the notation to be used
herein is introduced for convenience. To begin with, the
three-dimensional fundamental equations of niezoelectricity
with extensions to the effects of mechanical bias are ex-
presed as the Euler-Lagrange equations of a unified varia-
tional principle deduced from the principle of virtual work
by means of Friedrichs's transformation in Section 2. In the
next five sections, the set of two-dimensional approximate
equations is systematically derived for a prestressed piezo-
ceramic shell by use of Mindlin's method of reduction.
Section 3 contains a description of the geometry of ceramic
shell and also the relationships between space and surface
tensors needed in the subsequent development. In Section 4,
a linear representation is introduced for the mechanical
displacements and the electric potential, and then, the re-
sultant field quantities averaged over the thickness of pie-
zoceramic shell are defined. The distributions of mechani-
cal strain and quasi-static electric field are given and the
macroscopic constitutive relations, both linear and nonlin-
ear, are formulated for the piezoceramic shell in Section
5. The two-dimensional field equations of incremental mo-
tions and the associated boundary conditions are consistently
established by use of the unified variational principle to-
gether with the linear expansions of field variables, and
the initial conditions are recorded at the perturbed state
of piezoceramic shell in Section 6. Similarly, the static
governing eauations of piezoceramic shell are formulated via
a variational procedure at the unperturbed state in Section
7. Special cases involving the polarization direction,
geometry and motions of piezoceramic shell are indicated,
and the governing equations of a biased piezoceramic plate
of arbitrary shape and those of an unbiased piezoceramic
shell are explicitly stated in Section 8. Also, the fully
linearized governing equations of piezoceramic shell are
given and the uniqueness of their solutions is investigated.
Some conclusions regarding the results obtained are drawn
in the last section.

-- - - • • m • mmm.
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NOTATION

Throughout the paper, standard tensor notation is freely
used in a Euclidean three-dimensional space E. Accordingly,
Einstein's summation convention is implied over all repeated
Latin indices (1,2,3) and Greek indices (1,2) that stand for
space and surface tensors, respectively, unless they are put
within parantheses. In the space E, the x -system is iden-
tified with a fixed, right-handed system of general convec-
ted (intrinsic) coordinates. All the field quantities are
described in Lagrangian formulation, and a quantity in the
initial state is designated by a zero index and a prescribed
quantity by an asterisk. Further, a comma stands for partial
differentiation with respect to the indicated space coordi-
nate, a superposed dot for time differentiation, and a sem-
icolon and a colon for covariant differentiaton with re-
soect to the indicated coordinate, using the space and sur-
face metrics, respectively. Also, the symbol B(t) refers
to a regular, finite and bounded region B contained in the
space E at time t, B(=BU3B) to the closure of the region B,
with its boundary surface aB, BXT to the domain of defini-
tions for the functions (x ,t), T=Ft ,t 1 ) to the time in-
terval, and H=L-h,h] to the interval across the thickness
of piezoceramic shell. As for new quantities, they are de-
fined whenever they first appear.

NOMENCLATURE
i

x a fixed, right-handed system of general convected
coordinates

Zh thickness of piezoceramic shell
A, C area of the midsurface of shell, Jordan curve

.... which bounds A
TJ t 0, tI total, initial and incremental stress tensors

0
S..,si.,s.i total, initial and incremental strain tensors] 0 mass density of the undeformed body

U.,u.,u i total, initial and incremental displacement
vectors

T T ,Ti total, initial and incremental stress vectors
n unit outward vector normal to the boundary

surface aB
D electric displacement vector
E. quasi-static electric field vector1
a surface charge

electric potential
TE electric enthalpy
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2-VARIATIONAL FORMULATION FOR STRAINED MEDIA

Variational principles, both differential and integral types,
are widely appreciated in succintly expressing the fundamen-
tal equations of a medium. Besides, these priciples are
valuable in systematically deriving lower order field equa-
tions and directly providing approximate solutions, and hence
they are used for the purpose of this study as well. Pri-
marily, Tiersten and Mindlin [84], Tiersten [85] and EerNiss
[86] developed various variational principles in piezoelec-
tricity, as did Vekovishcheva [87] and the author [36], [88].
In addition, Mindlin [89], Nowacki [90] and the author [65],
[91]-[93] presented some variational principles in thermo-
piezoelectricity. However, only little effort was made to
formulate variational principles accounting for the effect
of biasing stresses [35], [36] in which Hamilton's principle
was used as the basis of derivation. In order to render the
present work self-contained, it is the purpose of this sec-
tion to derive a unified variational principie of piezoelec-
tric strained media by taking the principle of virtual work
as a starting point. The reader can be referred to 21
for additional background information and to [6], _7j for
recent contributions on the subject.

To begin with, referring to a fixed, right-handed system of1
general convected coordinates x in the space E, a regular,
finite and bounded region of piezoelectric elastic medium,
B o+Bo, with its boundary surface 3B is considered at its
initial unperturbed or reference stage at time t=t . At
this initial state, the piezoelectric region is subjected to
a finite deformation due to static initial stresses, and it
is taken to be self-equilibrating. The piezoelectric region
acquires its spatial (perturbed or final) state B+3B by an
additional vibrational or wave motion of small amplitude
which is superposed onto the finite static deformation of
piezoelectric region B0 +3B 0 at the time interval T=[totI).
Now employing the Lagrangian approach, an extended version
of the principle of virtual work is stated for the piezo-
electric region at its spatial state as an assertation

-5 +65y+6*W=0 (5.1a)

with the denotations

6-5fB(Tisij --DiE i)dV, 6eS=1/26JBpUi6idV (lb)

* i
SW=J•B (T*6Ui-aS) dS
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where s*W stands for the work done by external mechanical
and electrical forces, and 6* with an asterisk is used to dis-
tinguish it from the variation operator 6. Integrating over
the time interval T, (1) may be expressed in the form

6r .fTdtfB- (tiJ S-D i6Ei]dV-dtBpai6uidV
0fTdtfaB [( i iB (2)

+ +t,)6ui+ cý65]dS=O

with the definitions

T t t total (=ti3+tlj), initial and incremental
stress tensors

S.. ij s total (=s°.s0 ) + initial and incremental
,1 ,J i] j]

strain tensors

P mass density of the undeformed body

a Lagrangian acceleration vector
0 0Ui,uI,ui total (=u÷u+),1 initial and incremental

displacement vectorsii ii
T To, total (=T +Ti) initial and incremental

stress vectors

n unit outward vector normal to a surface
1

Di element of ýB
electric displacement vector

Ei quasi-static electriQ field vector
surface charge (=niD1 )
electric potential

By inserting the gradient equations by

S. .=E.3I/u
S. .U k k;j, Eij=1/2(Ui +U .) (3)

Ei = ,i (4)

into (2), applying the Green-Gauss transformation of inte-
oirals for the regular piezoelectric region, carrying out the
indicated variations, and then combining terms in the sur-
face and volume integrals, one obtains a two-field varia-
tiaialprinciple for the piezoelectric strained medium as

62 ui, 0} TdtfB (L 6uitL6)dV+ TdtJ3B (,i6ui+L.WdS=0 (5)

with the divergence equations of incremental motions by
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ikjj-Lj= +t u )k - a =0 in E-XTC)

L z = 0 in EXT (7)

and the associated natural boundary conditions by

* * 1 o ;k on BXCS

IJK -n.D i=0 on ýBXT()

as its Euler-Laarange equations. In deriving (5) , the
stress ecuations of equilibrium and the assoclaaoed bouncý-

conditiLons at the initial state as

L o k~u )]o k 0 in EXT CInIBe)

L*>=T ]n t ik (6iu] )=0 on ý-,XT lb0 0*1i0 k o;k

are considoe-red, the usual arguments are irnplied, on the In-
crements of field variables [11] , [27] , and the cntan
conCoitions of the form

1u n BCt )and B~t )CI

ar ioosced, and also the variation, dife-rentiaýtoon and
_nteora=t~on operaý,tors are taken to commute with one another
and th-e variaticns to obey the axiom- of conservatoo'n c'0: =

ord4er to describe completely the incremental motions o:
oý-ezoelectri-c strained medium, the variational ' S

supplemented by the gradient eauations (3) and (4) , ano
th'e o onstitutive relations in the form

lj 1 _ _ _i -

= )+ ,. ), D =-~<)(12)

2 o.

w-r -^Ce., E ," ) tns for an electric entnaov :unc-
tion ;hicE~contains the initial stresses as param-,etersL 2~

the boundary conditions as

u -u*=O on cE XT 13

:*- :-0 on ;'E XT14

ad:L t 'o n to (Can d C9,te In It1al1 c o ndýIt io ns of the

)x.:Jt )- ( xjC=0, t( Cxt (x )= s in Bt 15)0t 1. 1 0 )
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'P(xi, t )-*(x i)0 in B(t ) (16)

and the constraint conditions (11). These conditions prev-2t
a simple and free (unconstrained) choice of trial functions
in direct approximate solutions, and hence the variational
principle (5) becomes almost always inconvenient in compu-
tation. To remove the constraint conditions, Friedrichs's
transformation is implemented [94], and accordingly, a dis-
location potential for each constraint is added to (5) so
that all the variations can be treated as free [95]. In
doing so, the variational integral (5) is expressed in an
augmented form (cf.,[28]) by

6L3:f-fTdtfB(51C+tiJuki6uk 6 )dV-f dtp ia6uidV
= 03

+fTdtfSB(T, 6ui+o6)dS- fTdtBA dV+cfTdtf A 3 dS

+5 fTdtf 3B, 4
4 dS=0 (17)

ii i iwith the Lagrange undetermined multipliers x i i
and the denotations by

1 ij 2 (u 2 i
1 L-j i j j ~ 2= i i(18)

,1A3 i(ui-uI) , 4 =, ( _-)

where (10) and a linearized formulation of initial stresses
are utilized [28]. As in (2), by performing the indicated
variations In (17), using the Green-Gauss transfo-mation of
integrals and assembling pertinent terms, the Lagrange mul-
tipliers are identified as

ij:_Di ki i Di
1iJ ti , = -D 1, X :=T 1, =n.D = (19)

by use of the fundamental lemma of the calculus of variations.
Upon substituting (19) into (i) and on bearing in mind the
usual admissibility conditions of field variables [36], one
concludes a unified variational principle for the incremen-
tal motions of piezoelectric strained medium as

i ]; % J + 61 =0 (20a)d£(i} •a i + a

with the admissible state

,ýi {ui' Sij' ti i Ei Di(0bz=. . , t 1 ; •, ,~ D, o} (20b)

and the denotations 'y
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IjI 1L2 ,13 L 1tit' 12 II 1 -13):fTdtfP L u L'Kijlt]dV (20c)
21 i21' J 2221 6J 2 3 23)=fTdtfB(LS ' Ki 6Ei M "ID )dV

11 i'
(5I1 61 1? 2 ):LTdt(fB L6uidS,fKB *i5,dS)

(21 i22 )fT dtf B u (20d)
(61221' 61222 )f Tdt(f3BaL*6'dS, f 3E K.6a dS)

those by

i W C i K), KU- l--ui;+u i), K.=u -uLi =i] 2- i :. i] sj; j; ] i

i 'i 1' (20e)
K =-(D + - ), Mi=-(Ei÷,), K=•-D

'E. ~ ~ ,

and also those defined in (6)-(9). The unified variational
principle (20) evidently yields all the fundamental equa-
tions of incremental motions of piezoelectric strained media
but the initial conditions and the symmetry of stress tensor,
as its Euler-Lagrange equations, and conversely, if the fun-
damental equations are satisfied, the variational principle
is definitely verified.

The unified variational principle (20) operates on the in-
cremental, mechanical displacements, strains, stresses and
tractions, and the electric potential, quasi-static electric
field, electric displacements and surface charge of piezo-
electric strained medium. The usual continuity and differ-
e n tiability conditions for the field variables, the initial
conditions (15) and (16), the conditions (11) and the sym-
metry condition of incremental stress tensor are imposed on
the admissible state A. of (20b) . The variational principle
(20) recovers that deduced from Hamilton's principle in
Cartesian coordinates, and it includes certain earlier va-
riational principles as special cases [33]-L36],[82]-[861.
Moreover, the variational principle (20) should be modified
for the linearized constitutive relations by use of the
electric enthalpy of the form

2 i kij 1 ic i"k"

2l j -1 2 i i jk (21)

which implies the dislocation potentials by

Li t-(C •kij Ek) LiD (C ijk +C E.) (22)
Kljk kiJ -( kj

in.lieu of those defined in (20c). Here, Cijkl, Cijk and
CL] denote, in this order, the elastic and piezoelectric
strain constants and the dielectric permittivity of piezo-
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electric medium, with their usual symmetry properties, namely,

cijkl=ckliJ=cjikl, cijk=cjik, cij=cji (23)

On the other hand, the unified variational principle (20)

takes the form

TdBo o6ujLo&S.+K 6t dV+fT dtfB LI 6u.dS
to (24a)

+fTdtfKBu 0uo
with the admissible state

0o Sj0 t13 'o I (24b)

the definitions (10) and those by

miJ= tiJij3ko 0o 1 0 0 k o
L 'D IK..D-u- -u. +U. +

ol' o iji 2 i;j j;i o;i k;j

K uo.= .- u. 0(24c
i* 1 i*

and it leads to the fundamental equations of piezoelectric medium
at its initial state.

The differential variational principles (20) and (24) are

derived, in a systematic manner, for the spatial and initial

states, respectively, These variational principles are

quite general, and can be specialized to formulate a number

of differential and integral types of variational principles

operating on certain fields (cf.,[36]). Among them,

noteworthy are a two-field variational principle in the

form

ti1, iI=6113+j 23(2a13 23 0 25a)

which operates on the stresses and the electric displacements,

and a three-field variational principle as

fl: U ;t =6 11 +6j13 +J21 +51II + 61 21=0 (25b)
5i 11 13 21 11 21

which operates on the mechanical displacements, the stresses

and the electric potential.
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3 - GEOMETRY OF THIN PIEZOCERAMIC SHELL

In the three-dimensional Euclidean space E, consider a thin
piezoceramic shell which occupies a finite and bounded, reg-
ular region of space B+ B with its boundary surface B.
The region of piezoceramic shell is bounded by the edge (or
lateral) boundary surface S and the lower and upper faces,
S and S u The edge bounsary surface S is taken to be a
right cylindrical surface whose generators lie along the
normal to the midsurface A of the shell, and it intersects
the midsurface A along a closed, smooth and nonintersecting
(Jordan) curve C[961. An outward unit vector normal to S is
denoted by vi and that to Sf(=SifUS ) by ni. In mathemati-
cal terms, the region of shell is defined by

2 h/Rmin << 1 (26)

where 2h stands for the uniform thickness of shell and Rmin
for the least principal radius of curvature of the midsur-
face A. This fundamental assumption allows to treat the
shell region as a two-dimensional medium. Besides, it is a
sufficient condition in shifting space and surface tensors.

The region of thin piezoceramic shell is referred to th• xi-
system of geodesic normal convecteq coordinates, with x =0
on the reference surface A. The x -axis is chosen positive-
!y upward and the xa -coordinate curves lie on A. The
metric tensors of shell space are given by

X v a- - -1) alv a g33g3=

g Wa a O' ga 6 ( a-IX( ) ' g =g 3 =0, g'=g 1 (27)

with the shifters of the form
:a -x 3b• -l v a•6 -• =a -x3 ' .a v

a=;:-x 3b, 1 ' c= (b Cb-6 b V) (28)

and the metric tensor of A as

aa as o03 33 33
a,:C (xG,0), a =g (xo,0), a 3 =a 0, a =a =1 (29)

Here, a denotes the first fundamental form of the refererce
surface, b0. its second fundamental form and c 3 (=bo 7b)
its third fundamental form. By use of the shifters, tne
components of a vector field, (X1 , Xi) and (x ,x.), which
are referred respectively to the base vectors of shell space
and those of reference surface are associated with one
another as
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-- =(t V cc U vx • = • v (I L Iv , Cx (X , X x = P V X

3 - 3 (30)
X =X3 =X3 = X

Also, the relationships of the form

Xct~= (v:8 v8 ),X,. =(P-ýx(ý b:8=X ×e3=po, v,3

v a= -l _aV 3 -3
X3; a=3,a -t v a ;3=( )R,3' X X Xa= XO +b (31)

3 -3 -
X; 3 = X3 ; 3 = X3 ,3= X ,3= X3 , 3

are recorded for later use. Here and henceforth, colons are
used to designate covariant derivatives with respect to the
indicated coordinate by use of surface metrics and semicolors
those by use of space metrics.

Further, the elements of volume dV, of surface dS, on S, of
area dA on A and of line ds along C are of the forms

dV=I• dx dx 2dx 3= dSdx 3= pdAdx 3, n dS=pv dsdx3 (32)

with

p~jjjaj:(g/a)1 /2= 1-2x 3K - (x3 ) 2K ;g=1gijl, a~la 81 (33)
5m g3 't

S1/2 b2 Kg 3

Here, K and K are the mean and Gaussian curvatures of them
reference surface, respectively. A more elaborate account
of preliminaries from the differential geometry of a surface
may be found in [81], [97].

Fig.l. Geometry of piezoceramic shell
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4- MECHANICAL DISPLACEMENTS, ELECTRIC POTENTIALS,
AND MECHANICAL AND ELECTRICAL RESULTANTS

All the field variables of thin piezoceramic shell together
with their derivatives are taken to be exist and to be single
valued and continuous functions of the space coordinates x1

and time t, under suitable regularity and smoothness assump-
tions for the region of piezoceramic shell B÷3B with no sin-
gularities of any type. Besides, the region of shell is
treated as a two-dimensional medium on account of the funda-
mental assumption (26). In accordance with this, the fields
of mechanical displacements and electric potential which are
chosen as a starting point of derivation are represented,
applying Weierstrass's theorem, by the powir series expansions
in terms of the thickness coordinate x as

-N 3n (n) a X 3 au i(XJ't): I (x3)nu~n (x ~t)=v (xa t)+x w.i (x• t) (34a)

i n3n aN =

I(xi,t = (x 3) n (D (n)xc t)= ý(xc~t)+x 3 (x't) (34b)

n=O

Here, N denotes the order of approximation, and it is taken
as N=1, that is, only the zeroth and first order terms are
retained in the derivation; this is the closest to the clas-
sical theory of thin shells [81]. Also, in (34), u. stands1
for the components of incremental mechanical displacements
referred to the base vectors of the reference surface A
defined in (30). The components va characterize the exten-
sional motions, v3 and w the flexural motions and w the
thickness motions of piezoceramic strained shell.

The representation (34) evidently implies a distribution of
incremental strain and quasi-static electric field in the
form 2

{Sij' Ei} = I (x3) { S Eij'mEi (35)
3. m=0 J

Here, the incremental strain of order (m), S.. and the
electric field of order (m), E. are functions of the aerial
coordinates xa and time t, onTy. The explicit expressions
of electric potential and incremental strain of order (m)
are obtained in the next section.

In consistent with the linear representation (34), the elec-
trical and mechanical field quantities are taken not to vary
widely across the thickness of piezoceramic shell, and hence
they are averaged over the thickness interval H(=[-h,h1).
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Accordingly, the two-dimensional resultants of incremental
stress are defined by

CN c", Mc ,, K c"]=fHj1 , x3 , (x )2]t a'pt dx 3

[Q', R] =fH[l,x 3]ta3 pdX 3 , N3 3 = lt 3 3 dx 3

those of acceleration by

Ai .i= - ..iW, Bi= 1 vi i2  (37)

with

n=fH/ x 3 ) n pdx 3 =I n- 2 KmIn+1+KgIn+2 (38)

and

In fH(x 3 )ndx 3  1 =2 (h) 2p-1/ =0 (39)

those of traction by

(qcl, pCL)=( zt 36) , (q3,p 3 )=(pt 3 3 )at(x 3 =h,-h) (40a)
6

and
(r, So)={ p t3 e [vax , -b av3+x 3 (w: a -b(Xw3) ],Ut 3o3W }C at (x 3=h, -h)

0 0,a 0 3 : 6ýS3 3 3 h 4b

(r S {pt 3  +bv +x 3 (w +bw +ptW at (x3 (40b)
0 1s0 )= 0 EV3 ,La 3a ab 0 3 bw)vtw 3 atX=-h

those of loads by

(N',M')f Vrf px(1,x 3 pdx 3 , (N3,M33 ýd3
* *(N )M=f HT[*(lx (4d)33 3, 3 3 3 (1

(S. ,P.*)=(Pp.-r*) and (S3,P3)=(pT3)at(x =h,-h

and

ii i i i ii
1 =q -p =r-S; m =h(q +p ),mo=h(rl+s) (42)

those of initial stress by

[Noa ,Mos , KoS J=H[1,x 3 , (x 3 2 ] toB ,dx 3  (43)
0 0 0 fH x0[Q ', R'] 3f 1' 3 to3 pdx 3

0 0 inHia 0o

those of initial traction by
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S 4) 33- [. o 3 a 0 3 a t33
(qo' Po:t Lv -Vob V3 + ( 3  t w
o 0 0 o:B B o;:3 0 0

at (x =h,-h)
3 3 3 a o ao 3xo o U .33

(q 0 [Vs ccbIv,,x (W, +bws o t-Pt 33 03) (44)

and those of initial loads by

Sa B 3 3 3 3 3 3 3(N*, M*)=H T *P (,x )Pdx , (N *o *o)=fHT*0 (lx )pdx
C a •S3 3 3 3(45)

(S~o, Po)=(•i'-.o) and (S.,Po)=;(PT) at (x 3 =h,-h)

and

N0q P M. h(qi + pi) (46)
0 0

and also, the two-dimensional gross electric displacements
by

(F , Gi) f H(l, x 3 )D•pdx 3  (47)

surface charge resultants by

3 3
(c, d) = (zD ) at (x =h, -h) , e=(cid)h (48)

and edge-surface charge resultants by

(F., G.) .(, x 3 dx3 (49)

are introduced. In the foregoing definitions, the resultants
of stress and the gross electric displacements are measured
per unit length of the coordinate curves on the reference
surface A, the resultants of acceleration, surface load and
surface charge per unit area of A, and those of edge-load
and edge-surface charge per unit length of the Jordan curve
C of A.
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5- STRAIN AND ELECTRIC FIELD DISTRIBUTIONS,
CONSTITUTIVE RELATIONS

The distributions of incremental strain and electric field
for the piezoceramic shell are expressed in terms of the
displacement and electric potential gradients, respectively.
To obtain the explicit forms of the distributions of order
(m), (35) is inserted into the third term of variational
volume integrals in (20), namely,

5J13 =f dtf dAf Kij tl'dx =0 (50)
13 T A H tiJ

and carrying out the integration with respect to the thick-
ness coordinate, one obtains

6Jl3 =f dtA[(oS,,-e,)6N a + (1S - E M +(2S -Sa Y )6Kas
13 JTdtfA[t 1 as ) (51)

+ (oS 3 -ea 3) 5Qa+(I S-a3-a 3) 6Ra+ (oS3 3 -e 3 3 )6N 3 3 1 dA=0

This yields the distributions of incremental strain as

S. .=e. (x ,t) 1 S .= . (x ,t), 2S yij== (x ,t) (52a)0 1] 1] 1 ij ijl 2 i

with the definitions

e __ (b 2b w
ea=---2 a: v -2basv), e3 =----(v 3,a tbv+-w.), e 33=w32 a: • B÷WaS3 a32 , a-2ba 33'3

E =-_L_(-bavv -_byv 4-2c v3+w 2b w F-, 1

Os 2 a 0:5 B a:0L as 3 a:et S:a_ as 3 a3=-2 -3,a

1 ; a (52b)
'Y =---b w -b w +:2c w );-3 =Y =0as 2 ac:S s sa:ao as 3 33 ai

as its Euler-Lagrange equations. Likewise, sýýstituting
(35) into the variational volume integral 3J 23 of (20) in
the form

6 J 2 32=4TdtJAdAJ Mi6D i dx 3=0 (53)

and performing the indicated variations, one reads

a3 a6J 2 3=fTdtA [(oE -e ) 6FL+CE -E )6G ' (0E3-e3)6F dA=0 (54)

which has the distributions of electric field by

E =e. (x ,t), 1E =C (x ,t) (55a)

with
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e - , ,e3 - , F- - , 3 0 (5 5b)

In evaluatio, of (50) and (53), the mechanical and electrical result-
ants (36) and (47) and the relations (31) are considered.

The distributions of strain and electric field (52) and (55)
are now substituted into the constitutive parts of the vari-
ational principle (20), and then the variations with respect
to the thickness coordinate are carried out recalling the
resultants (36) and (47). Thus, the mechanical constitutive
part of (20) is expressed by

12 )]5ei rM 1y- + a) ] ý

+•[K-P ) 6 Y +I a- 1 2 .ae )]6e 3
2 -ý 3Y$X a 3ea3 3e ot a

33 D
+ )]s 3 (N + )e)e3 3 }dAO (56a)

a±3 -3x 33
and the electrical constitutive part of (20) by

J22 JTdtfA[(F+ 3e. )5ei+(Ga+ _ýF 6F-OdA=0 (56b)

1

The Euler-Lagrange equations of (56) and (57) are the consti-
2utive equations of piezoceramic shell in the form

2 e ; 2 Kh a 2 3yaB "y a}
1 3Ty• 3 •-3), 33

1 =3- a 1 N on AXT (57)
2 3ea3 3e3a 2 3Ea363ae 33

and

F =- , a on AXT (58)

where

= ~ x3  (59)

is the electric enthalpy per unit area of A.

The constitutive equations of piezoceramic shell (57) and
(58) include the effect of nonhomogeneity as well as that of
nonlinearity. If the effects are neglected, that is, the
quadratic version of electric enthalpy (21) is invoked and
accordingly (22) is considered in (20), the linear consti-
tutive equations of piezoceramic shell are obtained as
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(N , M a, K =cc ,C ,C T S'' ( C1 ka z(E T

s6 cCz8 VS o s -(C,1 -C2

(Q a Ra)=(Cor C) a3kl(S l)T_ (Cl)kx3(Ek)T on AXT (60)

N33 33k1. T k33 T
.0 .K 0 o k)

and

(Fl, Gi)=(Co, C )ijk(sjk)T-(Co Cl) ik(Ek) on AXT (61)

Here, the matrices of mechanical strain and electric field
are introduced by

(Skl)=(ekl' mk ' E kl ' (Ek)=(ek, Ek, 0) (62)

and the elastic stiffenesses by

n n' n-l' n-2 n (H3

which can be expressed in the form

ciJ'''.k=ciJ'...k• (63b)
n n

in the case of homogeneous ceramic material.

6- ELECTROELASTIC EQUATIONS OF INCREMENTAL MOTION, AND
ASSOCIATED BOUNDARY AND INITIAL CONDITIONS

This section is devoted to a consistent derivation of the
two-dimensional electroelastic equations of incremental
motion and the associated boundary and initial conditions
for the piezoceramic shell from the three-dimentional equa-
tions of piezoelectricity. The point of departure for the
systematic derivation is the linearized representation (34)
and the unified variational principle (20). The derived
equations involve the stress and couple resultants introduced
in Section 4. To begin with, the firs term of volume inte-
grals 5Jl1l in (20) is stated as

5J 11 dtfAdAfH[La(6V +x36w )+L 3(6V3+X36W3)]dx 3 =0 (64)

where (30) and (34) arj used. The integration of this equa-
tion with respect to x yields

Jl i:fTdtfA[(vi+U• 1i•A )5v.l+(Wi+Ti+mi+mi-pBi) 6wi]dA=0 (65)
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Here, the mechanical resultants (36)-(46) are recalled, and
also, various relations between space and surface tensors
and their derivatives are considered and the identities of
the form

V xa výa vt ( x6Ot V1) a Abx 3a- P
OtX ;•- a : - )A b a ax
a3 =(a3:+ -1) a 8 (66

;a 3 v ) PP b x SL- P (P cbx b (66)

v 3 ot v 3a
P2X ;3= O ,

and

2(K K)=- M_(x3 )Kb (67)

are used. From (65), it follows at once the two-dimensional
equations of incremental motion as

V + Ui + 1 + 1 - pA = 0 on AXT (68)o 0

W + Ti + mi + ml - PBi 0 on AXT
0 0

In these equations, the field quantities

Vc= VSd -baQ v, V3 =Va 3 +b VaB:8 v :a 0 C (69a)

W Sa Q W 3W a3 -N +b Was (6

and
Ua:Ua -baUv 3  U3=U a 3 +b Ua

U ~ ~ = +b Ua _ Uo o v o o O:a as 0

T :T a -bPT v 3 _ QoV (vaI- bc v)+O N3 3 )wa (69b)
T3 ca3 bT a 33 3 ac s

= T 4-b T -(R' tfN )w -Q (v tboO o :2 a o0 o: 0 Q 0 3 a a (

where

av N'b' aS 3 8t av; a3= a, a 3

V N _ v Wa:M -b K ; VM Qb, WK =R (69c)V V

and

23
'A (v ' -b w wU v :w _b£v )+M' (wS -bw ) +Qo 3 W8

3 -uO3 a: V aS V
U0 =Q w t-N0 (v 3  +b v )+M' (w3 5 +b w)
0 0V 3 ,o s

T :o o r 'A V B _ b 8 3 . . a ( w _ b 6 3 ( 6 9 d )

0 0 V 0 v

Ta 3 ,Mo (v v Kaa +bVw)
0 0 3 , eb v)K 0 (w 3 ,3 V
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are introduced.

In a similar manner, inserting (34) into the fourth term of
volume integrals 6J2 j1 in (20) one reads

~21 = 3 3SdfHD
6J 21 TdtfAdAfD (6ý +x3 6))pdx 3=0 (70)

3
Then integrating with respect to x and using the identity
(67) and that of the form

, =(X ) ( P 3X 3(71)

the variational integral (70) becomes

6j211=T dtfAE(F :ý+c-d).+ (G :-F3 +e)4idA=0 (72)

in terms of the resultants (47) and (48). The Euler-Lagran-
ge equations of (72) are given by

F -a-c-d=0
3 on AXT (73)

G -F +e=0

which denote the two-dimensional charge equations of
electrostatics.

Now, attention is turned to the associated boundary condi-
tions which follow easily by evaluating the surface integrals
of (20). The mechanical displacements are taken to be pre -
sca~bed on only a part S (=C XH) of the edge boundary surface
S and the tractions on the remaining part S (=C XT) of Se. tt. e
and tine iower and upper faces S and S. An alternating
potential difference is appIfed to •Ae perfectly conducting
thin electrodes on S and the surface charges are specified
on S (=CXH). Thus, the mechanical surface integrals of (20)e
are stated in the form

xii= JTd t fCt fH [T3.- V (taJ +toaku3,k)16 ujds.J X3
~llT~tHLTV~~ 0 ;k j

1fTdtfS [J-n(n3lt3j+t3okuJ k)]Pu.jdA=0 (74a)

and
l122Tdc (UU)6 i 3

i H (uu) 6T dsdx 0 (74b)
u

Evaluating these integrals as in (64), the natural boundary
conditions of mechanical displacements are obtained as
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v - v* 0, w. - = 0 along C XT (75)
1 1 1 1 U

and those of tractions as
j (.¾E .~ ~ W~T')cx

NI-v Va3oUC3)=0 M V (W a+Tj along CtXT (76)

and

sJ-(q3+r3o)=0 on SuXT, P 3 -(p+S3)=0 on S XT (77)
0uf 0 if

in terms of the resultants (40) and (41).

Similarly, the Plectrical surface integrals of (20) are
expressed by

ýI dtjS(ý-ý,h6udA=0, 61" dtj n ý --a) 6dsdx =0 (78)
f2 f

After evaluation, this leads to the natural boundary conditions of
electric potential as

$-y=0, $-6=0 on AXT (79a)

and

v F* -F=0, v G -G,=0 along CXT 79b)

in terms of the resultants (49).

On the other hand, a set of initial conditions arises in conjuction
with (15) , (16) and (34) as

8 v a, *X 0V (X t ,t )-a*i(x :=0, wi(x• to)-•
on A(t ) (80)

v (x 't )-* (x )=:0, wi. (xC'to) -6*i(x :0
1 0 C 0 1

and

"•(x ',tO)-a(X )=0, y(x ,t0 )-% (x ):0 on A(t ) (81)** 0*•* *

where a*, E ' u' ' a• and are the specified functions of the
1 1 1 ix

coordinates x
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7 - THEORY OF PIEZOCERAMIC SHELL UNDER A BIAS

Thus far, the electroelastic equations of a piezoce:amic
shell are derived for its incremental motions superposed
upon an initial, static finite deformation at its perturbed
state. Now, the two-dimensional equations are complemented
by those of piezoceramic shell at its unperturbed state. At
the unperturbed state, the piezoceramic shell is taken to be
self-equilibrating, no electric field to be present and the
field of mechanical displacements to be presented by

0 o 0a 3 o cc
i(x )=v (x )+x w. (x (82)

which is the counterpart of (34a) for the static deformation
of shei 1.

In parallel with tho derivation of the electroelastic equa-
tions at the perturbed state, the variational principle (24)
is evaluated, and then the two-dimensional equations of
equilibrium are obtained in the form

ýýa S a at 8 k S(V + (Q iA )-N =0(o3+o ) : b5Qo o~ o

(V 3A +b (V +$-A )+N 3=0
o 0 :a~ an 0V 0 0onAT(3
Fa Ba a. a 8 a a on AXT (83)(W +B ) -Qo-n°A +E oM 0

a 3 a +b a .a 33 3 3(W +B +b (WcS+Ba )-N +E +M u
o o :2a8 CE3 0 0 0 0

with the denotations by
as aL; S aa C(3 a au

V =N -bM Q01 ý4P=M-bSK , =Rao o o 0 0 0 0 0O 0 0 (84)

and
SS~ 3 ac 8 B

A =N (v -bv)+M (W -bo)+Qaw8
00 0 :C o 0 y :0 o3 00
a aS o 0 0 S o ao a 3

A 0 N 0(v 3, -b vr)-Mo (w3 '+b w, )+Q 0w0
as a8yS3 ac 8 80 aBR =Ma (V -b v )+K (w -b w°)+R w

0 0 0G GO y 0 0 : Cy 3o00o85
a 0 G 0 O C3 (85)

B =M~ (v b )+K0 (W i-bowo)iRaw
0 C (vi-býv 8 3,8 or 0 0
a C 33 a E(Va , a3 a 3E-(R w _+N w )-Q (v -bv-_bw0 0 +0: 0W0 0 o :8 B8o8Wo0

3 3 33W3 a o 8 oPo (Rw i-N w)-Q (v +bvs)o 0o0:a 0 0 0 3,a a E'
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in the notation of (43)-146). Also, the distributions of
strain are obtained as

o xk)=e. (xO)+x 3 x o (xoL)+(x 3 2  (xCL) (86)°ij( ) lj ij ) Y j

wi th

e o -Iv 0 -v -2b v30 v v 0v-bvv 0 -bV v
2 •:• -:L c•. o :a 6: 3 CL : 6:;

2 o o 0 6o o o o o-c (vj-+-v v +b vv +C v v -- b C
3, a 3, • , 6 3,a Ct CL 63 3,B 'DaV0V'j

0, 0 b60 ,6o 0 0
S='bb 2 + vVC: SC. 3  a 6:-8 6:a +ca3v3 0o a :

Soo 60 o600 o 6 oo
+ w o o v -bwv -bvw -bvw
:o: 3 5: a : 3 S- 3 W : 6:-a Va 3 6:8.

0 0.0 0 00 o o o 6 o o a o0o
2c v 3w 3+v w +v w +w vb +bw v 4bvw

S3 3 3 33 3 3a 63,a a 6 3 ,- 3,a
o00i, 6,o00l_,6, 00•

+bcv-w3 bv b v0w0 (87)
a i 3, S a a a a $ 5 oo

L- w o: -b6w :2c w+W w :-bw o:w
2 L S3 35 SZ 3a-b 63 : C 8 : 3C

t0o 0 o 2o 0 6 00 600 o o 0 0 o
-ow w+c -(w ) +ww wbw+w +bbw-I

cc3 3 C 
3  310 6 w 3,,",w 6w3 a (7 C

O 1 0 O0 00p a00 00 8 00
= +v V +w V3- -b'w v +wv -+b v w)

2 ( • 3,a Ct n 3 3 :,a a 3 3 3
.,a a C

o 1 0 08o0 00w1o2-

0 -= ("3 . + 0 :w + 0-w w3), e33:w30- -1- 0W o 2
:t3 2 3 0a o : a 3 3

,CL 33 3 2 CL0

0 0
-33=i13=

the macroscooic constitutive relations as

("- , R a)=(C ° C) 3kl ) T N33 (C0) 33ki o

o o •o Ki

( - = (ek ' kl' 'ki (88b)

the natural boundary conditions of initial tractions as

N 0V 0 0 +Aas )=O, N.O- v(V o3+Ao )= (89)0~o a( 0 0 *0C'
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along CtXTO

as as 0 3 ( 3 a (89)
M* v a(Wo -Bo )=0, M* 0- v(W 0--B) )=0

and

S3 -aJ=0 on S XT,=-P 3 0 on S fXT (90)*0 _0 uf o * o

and those of mechanical displacements as

v. - v°*= 0, w. - w *=0 along C XT (91)1 1 1 1 U 0

In deriving (83)-(91), the resultants of initial state (43)-
(46), the relations (30)-(33) and the identities (66) and (67)
are considered.

In the foregoing analysis, an electroelastic shell theory
for piezoceramics under a mechanical bias is systematically
and consistently established via a variational procedure.
The two-dimensional theory is constituted by the fields of
mechanical displacements and electric potential (34), the
distributions of infinitesimal strain and electric field (35)
and (52)-(55), the macroscopic constitutive equations (57)
and (58), the macroscopic stress equations of incremental
motion (68) and charge equations of electrostatics (73), the
natural boundary conditions (75)-(77) and (79), and the ini-
tial conditions (80) and (81) at the perturbed state; and
also, by the fields of initial mechanical displacements (82)
the distributions of initial finite strain (86) and (87),
the macroscopic constitutive relations (88), the macroscopic
stress equations of equilibrium (83) and the natural bound-
ary conditions (89)-(91) at the unperturbed state of piezo-
ceramic shell of uniform thickness. The complete set of
two-dimensional electroelastic equations governs the finite
static deformation of piezoceramic shell at the initial
state, and then accommodates all the incremental types of
extensional, thickness and flexural motions as well as their
coupled motions of biased piezoceramic shell at the spatial
state.

EI
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8 - SOME SPECIAL CASES

In the preceding sections, a shell theory is established for
vibrations of piezoceramics under initial stresses in invari-
ant form in the x'-system of general convected coordinates.
Thus, the shell theory is quite general and readily reducible
to various special cases of engineering interest. Of special
cases, those concerning with the material properties, kine-
matics and geometry of piezoceramic shell and those of biased
piezoceramic composite shell and unbiased piezoceramic shell
are pointed out. Also, a complete linearization of the re-
sulting equations is given. The uniqueness in solutions of
the linearized equations is studied by means of the positive
definiteness of enerpies.

Thickness polarization - The constitutive relations (60) and
(61) of biased piezoceramic shell that hold for all the lin-
ear piezoelectric materials are now specialized for the case
of thickness polarization. In such a case, the iirection of
polarization coincides with the thickness axis-x , and the
elastic and piezoelectric strain constants and the dielectric
permittivity are axpressed by 12 independent constants, in
lieu of 45 in the general case, as follows

-11 13 12oi c3 c1 0 0 0

13 33 13c c c 0 0 0
12 13 11c c c 0 0 0

44 55 1 11 22
ECq] 0 0 0 c 0 0 ,c -=-(c -c (92a)

55
0 0 0 0 c 0

0 0 0 0 0 c .
0•1e3 31 e6 16]IL C33i

"0 0 0 0 0 16e ciI 0 0

1ip] = 0 0 e , [cij] 0 C92b)

0 01 0 0

cpq Cijkl e Cikl

(ij) or (kl= 11, 22, 33, 23 or 32, 31 or 13, 12 or 21 (92cc

(p) or (q) = 1, 2, 3, 4, 5, 6

which should be replaced by those in (60) and (61).
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Similarly, the case of polarization in other directions
can be taken up in the constitutive relations of piezo-
ceramic shell.

Kinematics - By invoking the Kirchhoff-Love hypothesis of
elastic shells [81], namely,

w =-(v *bav ), w =0,
a 3,a (93)

w o_(0 bvo) (6+VB o 1 o vaw°=-(v• +bv)(6v ),w=---v V
a 3, 8o) a o:' 3 2--V3,a o3,

in (34) and (82), one obtains, approximately, the classical
case,

0

Yi3 Y0i3 0 (94)

Besides, in consistent with (94), a restriction of the fcrm

:=0

should be included in (34). The inclusion of (93)-(95) leads
to vanishing transverse shear and normal strains in the re-
sulting equations of biased piezoceramic shell.

Geometry - The formulation being in invariant form the re-
sulting equations can be readily expressed in any particular
system of coordinates most suitable for the geometrical
configuration of piezoceramic shell under consideration
(e.g., cylindrical and spherical shells or shallow shells).
Besides, in the absence of curvature effect,

b :0; a:a ='=l; n = n K =K =0 (96)B n n' m g

and hence, the governing equations of piezoceramic shell
are reduced to those of piezoceramic plate of arbitrary
shape. With these simplifications, the two-dimensional
equations of incremental motion in the form

N a +(Na v +Mw S a 1 B +iw 1 a-pA =0:a o :0 O :a 0 :a 0a a aS a8w33

Q a +(Qow3+N vB +M ,B w) - %13+13-pA 3=0
:a o 3 0 3,8 0 3,:a M 0

M al"+(Maov +Ka w +oRaw) -Q-(Qa v :+N 33w +Raw S
:a o :0 0 :0 0 :a 0 :a 0 0 :a

+M+m 5- pB =0
0R ,aS a8+K 3 a _33 (a +aw N33w

R t+(M aBv +K a6w -Raw) -N -3_(Qav +Rwa -I-N 33w):a 0 3, 0 3,R 0W3 :a 0 3o3,a 0 3,a 0 3
33_ 3=4-n+m -pB 0 on AXT (97)

0



177

with

q],pJ)=t3j at (x 3h,-h)

( ciý'= 3S~v c 3 wcci + 33 wa ±~ 3= ,h 9"
o 0 .~ 0
3 s t3 3c 3 33 ( 3

(r , °)=t (v +x w )-to w at(x =h,-h)0o o 0 3cc 3,ca 30 3

the natural boundary conditions of traction as

N V N +N V +M w *Q wa)=0
0 :0 0 :0

N3 " (Q +Qow +N v3, +MBo w )=00 o3on C XT (99o

m* VS (M +N v +K w +R0 w )=0 o
cc 0 :3 0 :0 0

M -Va (R +Raw 3 +M ~v 3 ,5 +KoW 3 ,6 ):0o

and

0 on SufXT, * (pJ+S)0 ons if XT (100)

woith (98), the distribution of strain as
1 1

e 2 = (v 3 +V e, = 2 (w +v 3  , e w
1 1 a (101)

S:- (w +w ), Ea3: 2 "3,a' £ 330; Yi =0
i 2 (w a3, 2 , 3

and (34)-(37), (47)-(49), (55), (57)-(63), (73), (75) and
(79)-(81) are recorded at the perturbed state, and (43)-(46)
and (82)-(91) at the unperturbed state for a piezoceramic
plate under initial stresses.

Piezoceramic composite shell - The two-dimensional equations
of biased piezoceramic shell can also accomodate the incre-
mental motions of a piezoceramic composite shell with N
layers for the case when the mechanical displacements and
electric potential fields vary linearly in the form

i(m) (xi t)=v(m) (x t)-x3 w(M) -( ) (xi ,--w(M) (xc t)

(m) i (M) (102)¢ (x ,t):a,t) ; m=l, 2, .... ,N

within the concept of the effective modulus of composites
(e.g., [98]). The piezoceramic shell consists of two per-
fectly conducting electrodes at its faces and (N-2) layers
between them. Each constituent of piezoceramic shell may
possesss distinct but uniform thickness, curvature and
electromechanical properties. Also, the constituents are
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well attached one another, and hence the relative deforma-
tions are prevented at their interfaces. Thus, (102) yields
the fields as

(in) (in) (in)
v =v , w =w; 4 p ) (103)

due to the continuity of mechanical displacements and elec-
tric potential at the interfaces of adjacent layers. In
view of (103), the resulting equations account for the in-
cremental motions of piezoelectric laminae provided that (2h)
is considered as its overall thickness, and accordingly the
integrations are carried out, and also, the simplifications
implied by (103) are taken into account. A detailed analy-
sis of biased piezoceramic laminae is beyond the scope of
this paper and will be taken up in a forthcoming study [99.

Unbiased piezoceramic shell - When the terms involving the
incremental motions are omitted, that is, the terms indi-
cated by a zero index together with the electrical terms are
retained only, a dynamic teory is obtained for the finite
motions of piezoceramic shell without a bias. The two-di-
mensional theory is both geometrically and physically non-
linear in view of the distribution of strain (86) together
with (25) and the constitutive relations (57) and (58).
The governing equations of the fully nonlinear theory are
(34b), (43)-(49), (55), (57) where the resultants should be
replaced by those with a zero index, (58), (59), (73), (79)-
(82), (83) with the acceleration terms as in (68), (84)-(87)
and (89)-(91). In virtue of the field of mechanical dis -
pazements (82), this shear deformable theory accounts for
the motions of piezoceramic shell subjected to large dis -
placement gradients and large angles of rotation. The finite
theory contains some of earlier theories which were always
geometrically linear, as special cases. Another important
special case is found by taking a partially nonlinear version
of the strain-mechanical displacement relations (25) in the
form

=so 1 (u;0 +uo0 )u0 u 0  +
=- 2 0 a; 0 :a 3'u3' ' a3 2 3 u3;a (104)

S 33= u3;3$33= ;3

in conjunction with (82). The use of (104) in derivation
yields the governing electroelastic equations appropriate
to a refined theory of piezoceramic shell of a von-Kgrmin
type [81]. Moreover, a complete linearization by discarding
the terms of initial state and using the linear constitutive
relations (61) and (88) leads to a fully linear theory of
piezoceramic shell. In this case, the stress equations of
motion are given by
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N b :b Q M-t-1-pA =0

a Sa S(M -b K Q) -QM +m -pB B=0
S a 3 3on AXT (105)

Qa+b (N a;;-b m aC 1+1-3pA 3 0:a ab Na o <A

R a -N 33bb (M a-b K )+m 3-PB 3=0

and the associated boundary conditions by

N a (N aa cMBCNv•Na-b:M °)0, N:-Q=

C U along CtXT (106)
Ma- V(M a-bamK 1=)=0, M3-v R =0

and
S3q:0 on S ufXT, Pm_-p]0 on S XT (107)

S* _quf pif

In addition to (105)-(107), the charge equations of electro-
statics (73), the electrical boundary conditions (79), the
linear constitutive relations (60) and (61), the fields of
mechanical disolacements and electric potential (34), the
distributions of strain and electric field (52) and (55) and
the initial conditions (80) and (81) constitute the governing
equations of the linear theory. The results of the afore-
mentioned special cases, with various applications will be
reported in detail in a separate memoir.

The governing ecjuations of the linear theory of piezoceramic
shell have a unique solution under the mixed-boundary and

initial conditions (79)-(81), (106) and (107). To establish
the uniqueness of solutions, the existence of two possible
sets of solutions identified by prime and double prime, and
their differences by u. (=u'-u')and alike isconsidered. In terms ofthe
difference variables, ýhe internal energy of piezoceramic
sh.ell is expressed by

S 13 i 1-si DiEI )dr (108)

By taking time differentiation, considering (22) and insertirq
(3) and (4) into this ecuation, the rate of the internal
energy is given by

fAdA H(tiu i;j-D i )pdx3 (109)

Substituting (34) into q09), then carrying out the integra-
t on with respect to x and applying (31), the rate of the
internal energy is obtained as
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S= A { V i:+WaW j cc b b ( v Wwe 3 ) Ve 3 13 )wV,3

bcQv --Q w 4-N -f]-('; Gý -F (110)
8 a 3 a ,a

in terms of the denotations (36), (47) and (69). Analogously,
the rate of the kinetic energy of piezoceramic shell defined
by

1 i. 3
fAdAfH •2 Pu ui Pdx (iii)

is found in terms of the acceleration resultants (37) as

Z = fAP(Alvi*Bwi)dA 
(112)

where (30) and (34) are used. Besides, in view of (73) and
(105), the equation as follows

f dt • [(v1'i*W1;i)-(F:I +c-d)$ - (G a -F 3+e)h] dA=0 (113)

T A ,i :L

is formed. This can be transformed, by applying the diver-
gence theorem, considering (110) and (112), integrating over
time and assembling all terms, to

A(E+2) 1 Cvrads+fArdA) (114a)
0

with the definitions by

S= (V Zv +W'ý' .)-(F +÷ G ,

(114b)
= (1 +M (c-d) ý+eý]

The kinetic and potential energy densities are positive-def-
inite by definition, and initially zero; so that the kinetic
and potential energies of piezoceramic shell and also Z and
JI, calculated in terms of the difference variables possess
the same properties. Thus, ifr"andrare zero in (114), one reads

Z (t1 )=2(t 1 )=E(t 0 )=ST(t 0 )=0 (115)

which implies a trivial solution for the difference set of
solutions, that is, the two solutions are equal. The
boundary and initial conditions (79)-(81), (106) and (107)
as well as to specify one member of each product in (114b)
make the right-hand side of (114a) zero, and hence, they
are evidently sufficient to ensure the uniqueness of solu-
tions.
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9- CONCLUSIONS

The main result of this paper is a shell theory in invariant
form for small motions superposed upon a static, finite
deformation of piezoceramics subjected to mechanical biasing
stresses. The set of two-dimensional, approximate, electro-
elastic governing equations of the shell theory is established
by means of the unified variational principles (20) and (24)
together with the fields of mechanical displacements and
electric potential (34) and (82). The governing equations
in a complete Lagrangian description are given for the
unperturbed static state and the perturbed dynamic state of
piezoceramic shell coated with very thin, perfectly conducting
electrodes. The shell theory accounts for all the incre-
mental types of extensional, thickness and flexural as well
as their coupled motions of, and also, for the initial,
finite, static deformation of, piezoceramic shell of uniform
thickness. The fields (34) and (82) which are chosen as a
basis of systematic and consistent derivation of the shell
theory take into account all the significant mechanical and
electrical effects, and they are able to predict the influence
of biasii.g stresses on the dynamic response of piezoceramic
shell. The two-dimensional, variational versions of the gov-
erning equations (51), (54), (56), (65), (72), (74) and
(78) provide an appropriate basis for numerical direct solu-
tions, for instance, based on the Rayleigh-Ritz procedure
or the finite element method [100]. The unified variational
principles are deduced from the principle of virtual work by
augmenting it through the dislocation potentials and Lagrange
undetermined multipliers. As their Euler-Lagrange equations,
the variational principles yield all the fundamental
equations of the initial state and those of the spatial state
but its initial conditions, of piezoceramic strained shell.
The variational principles do agree with those extracted
from Hamilton's principle in Cartesian coondinates [36] and
contain certain known results ke.g., [28], [321-[351, r82]
[88], and those cited in [101]), as special cases.

The shell theory incorporating the geometrical and physical
nonlinearities is quite general, and hence, it leads to a
variety of intermediate theories by considering special
motions, geometry and material of piezoceramic shell. The
resulting equations of shell theory may be expressed in any
particular system of coordinates most suitable for the
geometrical configuration of piezoceramic shells and plates
at hand. A fully nonlinear theory of piezoceramic shell is
stated in the previous section; this includes the results
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reported in [60], [63], [65] and F82] for the case when the
effect of geometrical nonlinearity is omitted and also the
curvature effect is absent. The electroelastic governing
equations of piezoceramic shell are shown to be applicable
for the incremental motions of a piezoceramic laminae, and
they are explicitly stated for a biased piezoceramic plate
of arbitrary shape and an unbiased piezoceramic shell. In
particular, the fully linear theory of piezoceramic shell
which does agree with the known results is described, and
then, the uniqueness is examined in solutions of its gov-
erning equations. The sufficient boundary and initial
conditions are enumerated for the uniqueness by use of the
classical energy arguments (cf., [102] for elastic shells
and [89] for thermopiezoelectric plates). Similar results
for the uniqueness may be obtained by means of the logarith-
mic convexity arguments ([103], and, for instance, [14] for
elastic shells).

Final remarks are in order concerning extensions and appli-
cations of the shell theory presented. The shell theory
may provide an appropriate basis for approaching to the
stability of piezoceramic shell. Another theory may be
established for piezoceramic viscoelastic shells by repla-
cing the elastic stiffenesses of piezoceramic shell by
their corresponding convolution integrals. Also, the shell
theory may be extended so as to incorporate the mechanical
effect of electrical coatings as in [60] , 823, the effect of
couple stresses (e.g., [104]) and the thermal effect (e.g.,

L1051), and especially, it may be developed for piezo-
ceramics under a biasing electric and thermal field, as
investigated in [29] and [106] for elastic plates, and even
under a magnetic field [107].- In closing, some of the above
mentioned points of importance is addressed in [101].
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CHAPTER 6

DYNAMICS OF PIEZOELECTRIC LAMINAE UNDER A BIAS

This paper is addressed to the macromechanical analysis of
dynamics of a piezoelectric laminae under a mechanical bias
within the effective stiffness concept of laminated composites.
The piezoelectric laminae consists of arbitrary numbers of
perfectly bonded layers, each with a distinct but uniform
thickness, curvature and eletromechanical properties, and it
is coated with very thin electrodes on both its faces. First,
the fundamental equations of piezoelectric strained medium are
expressed by the Euler-Lagrange equations of a unified
variational principle. Secondly, a set of two-dimensional,
approximate equations of the piezoelectric laminae is
consistently established. Thirdly, a direct method of
solution is indicated for the macromechanical analysis and
certain special cases are considered. The governing
equations are derived in invariant Lagrangian form and
accommodate all the types of motions of the biased
piezoelectric laminae. All the significant effects, both
mechanical and electrical, are taken into account.

I- INTRODUCTION

Laminae or multilayer type of structural elements was
appreciated only relatively recently due to their significant
improvements in piezoelectric properties for ultrasonic
technology. The features and applications of piezoelectric
layered and/or composite elements and the basic ideas under-
lying their sum and product properties are availablell-4].
To predict dynamic response of this type of structural
elements, there basically exist two types of macromechanical
models: the effective modulus model and the effective stiffeness
model. The former model [5,6] replaces a laminae by a
representative homogeneous medium with the aid of averaged

material constants of laminae constituents. This model, although
it is relatively simple, omits the mutual coupling of layers,
and it is generally suitable for a rather broad class of static
response of laminae. The effective stiffeness model combines
both the physical and geometrical properties of laminae
constituents and incorporates all their essential electro-
mechanical features, and it accounts for dynamic response
of laminae as well.
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Within the frame of this model [7], this paper describes a
macromechanical analysis of piezoelectric laminae under a
state of mechanical bias.

Extension of classical models (for instance, Lagrange's or
Karman's model of plates and Love-Kirchhoff's model of
(shells) to piezoelectric laminae leads always to an
effective modulus model, and hence it disregards the
electromechanical interactions between adjacent layers. On
the basis of classical models, the macroscopic relations of
electroelasticity weere derived for multilayer piezoelectric
plates and shells; their steady-state vibrations were
reported in some special cases [8-10] as well. Parton and
Senik [8] derived the macroscopic equations of multilayer
piezoceramic shells with thickness polarization of the
layers. Likewise, Karnaukhov and Kirichok [10-12] constructed
the governing equations of laminated piezoelectric plates and
shells by taking into account the geometrical nonlinearity
and, ii particular, the effect of viscosity and temperature.
Evseichik, Rudnitskii and Shul'ga [13] derived the
electroelastic equations for the vibrations of a shell that
is innomcgeneous in thickness and has piezoelectric layers.
Moreover, the thermomechanical behavior of multilayered
piezoceraric shells with thickness polarization was treated
under harmonic excitation by Motovilovets and Gololobov [14].
Mention should also be made of a theory of vibrations of
coated, thermopiezoelectric laminae in which t-he effects of
elastic stiffness of, and the interactions between, layers
of the laminae and its electrodes were all included [7].
On the other hand, Holland and EerNisse [15] described the
design and analysis of laminae types of piezoelectric bars,
disks and plates by means of Green's function technique.
Auld and his coworkers [16,17] developed a Floquet theory
of wave propagation in periodic composites that was shown
to agree wel with experiment. Bu~dayci and Bogy [18,19]
derived a theory for high frequency motions of piezoelectric
layers, including some applications, as did Lee and Moon
[20] for low frequency motions of piezoelectric laminated
plates. Moreover, a general transfer matrix description of
arbitrarily layered piezoelectric structures was obtained
[21]

Biasing stress or strain and/or electric field is a new
design feature and demand in piezoelectric devices for
ultrasonic application in control engineering. The presence
of a biasing state induced by external perturbations like
thermal, mechanical and electrical fields and even magnetic
fields can significantly affect the dynamic response of
structural elements (e.g., rods [22], plates [23,24] and
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shells [25,26] and the characteristics of BAW and SAW
(e.g., [27-31] and references therein). In a biased solid
medium, the linear theory of electroelasticity is in need of
modification so as to govern its motions. This fact was
widely recognized, and taken up by many investigators in
electroelasticity. Tiersten [32] derived a properly
invariant set of the nonlinear fundamental equations,
including thermal effects by means of a systematic use of
the axioms of continuum phsics. From these general
equations, he and Baumhauer [33] established the differential
electroelastic equations for small dynamic fields superposed
on a static biasing state of solid medium, and also, for
intrinsically nonlinear fields. Moreover, the fundamental
equations of a biasec. piezoelectric medium were expressed
as the Euler-Lagrange equations of some variational
principles [34,35].

The aim of the present paper is (i) to present a variational
formulation of the fundamental equations of piezoelectric
medium under a mechanical bias, and using this together with
a linear representation for the field variables, (ii) to
derive the two-dimensional, approximate governing equations
for all the types of incremental motions of piezoelectric
laminae under a bias, and then (iii) to describe a direct
method of solution for the incremental motions, to indicate
some special cases and also to consider the fully linearized
equations of piezoelectric laminae.

Specifically, a definition of the notation to be used herein
is given in the rest of this section and the content of the
paper is as follows. In the first part of the paper, a
unified variational principle is formulated by extending the
principle of virtual work through Friedrich's transformation
in Section 2. In the second part of the paper, presented in
Sections 3-6, by use of Mindlin's method of reduction, the
set of two-dimensional, approximate equations is consistently
derived for the incremental motions of piezoelectric laminae
under a static, finite, mechanical bias. The geometry of
piezoelectric laminae region is described in Section 3. In
Section 4, a linear representation in the thickness coordinate
of piezoelectric laminae is introduced for the fields of
incremental mechanical displacements and electric potential
which are chosen as a starting point of derivation. Also,
in accordance with the linear representation, various
resultant quantities averaged over the thickness of laminae
are defined. The distributions of incremental strain and
quasi-static electric field are given and the macroscopic
constitutive equations of piezoelectric laminae are obtained
in Section 5. The two-dimensional, approximate governing
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equations and the associated boundary and initial conditions
for the motions of piezoelectric laminae are deduced from
the three-dimensional equations of piezoelectricity by use
of the unified variational principle together with the series
representation of field variables in Section 6. Alternatively,
a direct method of solution is indicated in investigating the
incremental motions of piezoelectric strained laminae in
Section 7. Special motions, geometry and material are
treated and the fully linearized governing equations,
including the uniqueness of their solutions, are pointed out
in Section 8. The last section is devoted to the concluding
remarks.

N o t a t i o n - In the paper, standard tensor notation is
freely used in a Euclidean 3-space E. Accordingly,
Einstein's summation convention is implied over all repeated
Latin (1,2,3) and Greek indices (1,2) that stand for space
and surfaca tensors, respectively, unless they are put within
parantheses. In the space E, a fixed, right-handed system
of geodesic normal convected coordinates is identified by

i
the x -system. All the field quantities are used in
Lagrangian formulation, and a quantity in the initial state
is designated by a zero index and a prescribed quantity by
an asterisk. A superposed dot stands for time differen-
tiation, a comma for partial differentiation with regard to
the indicated space coordinate, and a semicolon and a colon
for covariant differentiation with respect to the indicated
coordinate, using the space and surface metrics, respectively.
The index (m) which takes the values 1,2. ..... ,N refers to the
m-th constituent from the lower face of piezoelectric laminae,
and, for instance, m=l (or a prime') to the lower face
electrode, m=2,3,...,N-i to the layers and m=N (or a double
prime") to the upper face electrode of laminae. Moreover,
B(t) represents a regular, finite and bounded recion B of
the space E at time t, B(=BU3B) the closure of B, with its
boundafy slirface ,B, BXT the domain of definition for the
functions of the space coordinates and time, T=[t ,tt) the

time interval, and Z=[z-h,z+h] the thickness interval of a

constituent.
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2- PRINCIPLE OF VIRTUAL WORK FOR THE PIEZOELECTRIC
MEDIUM UNDER A BIAS

To derive, in a systematic and consistent manner, lower order
field equations and to directly provide their approximate
solutions, variational principles were primarily developed
by Mindlin, Tiersten and EerNisse for a piezoelectric
medium, by Mindlin, Nowacki and the author for a thermopiezo-
electric medium, and by the author for a piezoelectric
medium, with small piezoelectric coupling and/or an internal
surface of discontinuity and that under a mechanical bias.
Hamilton's principle, the principle of virtual work and an
experienced guess work were used in deducing the variational
principles of piezoelectricity; a review of the subject ,,as
given in Refs [2, 35]. In order to render this paper to be
self-contained, a unified variational principle is reformu-
lated by extending the principle of virtual work through
the dislocation potentials and Lagrange undetermined
multipliers.

i
In the space E, referring to the x -system of general
convected coordinates, a regular, finite and bounded region
of piezoelectric elastic medium, B0 , with its boundary
surface 3Bo, under a state of mechanical static stresses is

considered at its initial unperturbed or reference state at
time t=t This initial state which is taken to be self-

0Equilibrating acquires its spatial (perturbed or final)
state B+3B by a small motion soperposed onto the finite,
static deformation of piezoelectric region B 0+B at the
time interval T=[to,t ). Now employing Lagrangian approach,

the principle of virtual work is stated for the piezoelec-
tric strained region at its spatial state as an assertation
in the form.

-. 'B(TiJ-s .- D iE )dV + 1/26! B 7 ui dV

S(Ti* + o¢)dS = 0

Here, T (=tiJ+t 1) tij and t are the total, initial and

o oincr-menntal stress tensors;Sij:(sl.. +S), s . and s.. the

total, initial and incremental strain tensors; p the mass
o

drerisity of unvlnformed piezoelectric medium; U (=u 0 + u1
o )

> an] u. the total initial and incremental displacement
c 1

vc<ters, a (=ui) the ILagrang ian acce leraticn vector; Ti

}1

p _ _ _
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(=ti + ti), t. and ti the total, initial and incremental
0 i

stress vectors; D' the electric displacement vector, E the

quasi-static electric field vector, a(=niD i) the surface

charge, ' the electric potential and n. the unit outward
1

vector normal to a surface element. Substituting the gradi-
ent equations of the form.

S.. E. + 1/2 Uk U1] 1] ;i k;j in BXT (2)

E• 1/2 (U •..+ U i) , E. =. .E1] 1 2 U1;] ]j; 1 ,

into (2.1), applying the Green-Gauss transformation of
integrals for the regular region B+3B, carrying out the indi-
cated variations, and then integrating over T, one finally
obtains a two-field variational principle for the piezoelec-
tric biased medium as

"Z 'Tdt r. (1,13Bu. + 1 5 )dV

+ . dt As (L i*5u + L*.1)dS = 0 (3)

with the divergence equations of incremental motion by

J1 ikuj j
L (t - + t u ) - a : 0 in BXT (4)o ;k ;i

L ) = 0 in BXT (5)

and the associated natural boundary conditions by

L = D n (t + tiku = 0 on 3BXT (6)0 ;k
i

L* = . - niD = 0 on ýFXT (7)

as its Euler- Lagrange equations. In deriving (3) the famil-
:ar relations between the stress tensors and the stress
vectors, the stress equations of equilibrium and the asso-
ciated boundary conditions, namely,

L= [tik (0 k + uj ;k)L = 0 in BXT

L o0 k + t u) 0 on ýBXTo. t * - nit .. o -k
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are considered the usual argumentsare implied on the incre-

ments of field variables [36] and the axiom of conservation of
mass is employed. Also, the constraint conditions of the
form

fui =6D = 0 in B(t)0 & B(t) (9)

are imposed.

To describe fully the motions of piezoelectric strained
medium, the two-field variational principle (3) should be
supplemented by the gradient equations (2), the constituzive
equations in the form

t 1/2 i j + as ),i D - i (10)

where ¶T (Sij,Ei, t' 3_ ) stands for an electric enthalpy
] 0

function which contains the initial stresses as parameters 737]
in addition to (6), the boundary conditions as

u. -u. = 0 on 9BuXT, I'-. = 0 on 9BXT (I1)
1 1 u

the initial conditions of the form

u. (xJ,to - v (xj) 0, ui(xJto- w (xI) : 0
1 0 1 0 1

r(xi,to0 -2 (xi) 0 in B(t ) (12)

and the constraint conditions (9). These constraint
conditions prevent a free choice of trial functions, and
hence, variational principles with as few constraints as
possible become desirable in computation. Thus, all the
constraint conditions but the initial conditions are rel.axed
through Friedrichs's transformation [34] and the initial
conditions following Tiersten's [38] approach. The result
is a unified variational principle by

,5L {A 6J= i + •Ia + 611i 0 (13a)O •i -a 6 i

with the admissible state

A , sij , tij Ti., Ei, Di, 01 (13b)

and the denotations by



L3

) ,L

t r (L 5

')3 11 B
L -

i ~ ~ -'s. ... d .

ZII

1'' 1 3 *

t 0

4]2 u

BI I D(, .i (
i '2 (" + (B1* i "6, *

*~ D ~ (17)
(x t

" -.1 i •j jto

( x :t - u jw ( x,)-J

0

x : (x• t
0' )S o J)(1

ni a I S in 4) -(7) areý defind. The variational
cr~aio--shoulJ be modified for th.3 linearized constitutive

rel2ati-on~s w~hich implijs the dislocation potentials byi
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S(C Skl - Ek)

i i Ij 1- i

li _ Di + (ci s C CiE.) 19
jk

in lieu of those defined in (16). In (19), Cijkl, lik and

Ci are the elastic and piezoelectric strain constants and
the dielectric permittivity of piezoelectric merium, with
their usual symmetry properties [351.

Evidently, the unified eight-field variational principle (!3)
yields, as its Euler-Lagrange equations, all the fundamental
dif:erential equations of motion of piezoelectric strained
media but the symmetry of stress tensor; and conversely, if
the fundamental differential equations are satisfied, the
unified variational principle is definitely verified.

The unified variational principle (13) recovers those ZE,347
deduced from Hamilton's principle and the principle of
virtual work, and it includes several earlier variational
principles as special cases; the generation of the initial
conditions is the novelty of this unified principle.

-EMETRY OF LAMINAE

In t•.e soace E, consider a piezoelectric laminae composed
of two perfectly conducting lower and face electrodes and
(:,-2) miezoelectric lavers between them. Each constituen
may possess distinct but uniform thickness 2hm, curvature

mf
and electromechanical properties. The regular region of

laminae, '+S, with its boundary surface S is referred to
i

the x -system of geodesic normal convected coordinates, the
3midsurface A of first layer x =0 being taken as the

reference surface, such that the corresponding metric ten-
sors of the undeformed laminae are given by

ai (W-1 - a (20)g~i=u_ • a,0 ' g = ( )" (o ) •a(2

g93 0 , g33 = 1

with the shifters of the form

S3 1 a -1 , (21)• -x b• , u (u )
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w•n..r.E a anI b denote the first an,. second fundamental

forms of the surface A, and c (rb ab) its thir,.

funda-ental form. By use of the shifters, the components of

i vetor field, (Xi, Xi) and (xixi), which are resoectively

referred to the base vectors of laminae space and those of
reference surface are associated with one another as

-a 1 a-. - -1 1X. , = (-) X ; X )X
'a ac a 5

Sa =~ = X3 •3 3 (22)=a ;4 X3 -3
-. 5 3

Besides, the equations of the form

3 13
x= - hI, x = 2h - hI, f(x,2 )= 0 (23)

define the lower and upper faces, S if and Suf, and the edge
boundary surface S of laminae. The reference surface A

e

intrsects the edge boundary surface along a Jordan curve C.
The bonding surface between the m-th and (m+l)-th consituent
is denoted by A , and the outward unit vector normal to

m,m+i
Se by V. and that to Sf by n. . In addition to the x -

system of local coordinates xm is introduced which is

situated on the midsurface A of the m-th constituent, Thus,m
one reads

a -3 3
x X 71 , x = x - z ; m=l,2,...,N (24)

where z is the distance between the surfaces A and A.m m

Also, the equations as

3 3
x M=0 x _z =0 (25)

clearly define the surface A and those by

I 3
x - hm = 0, X+1 +h 0 (26)
rn m m+l

x3 -(z h) h 0, x3 - (Zm+I- h m+)= 0

with
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m
zm = (2 -r -5 )h (27)1 ir mr r

the bonding surface A
m, m~1

In the region of piezoelectric laminae,

2h/Rmin<<1 (28)

where Rmin is the least principal radius of curvature of the

midsurface A, and the elements of volume dV, 3f surface
on S, of area dA on A and of line ds along C are given by

dV =%addx dx 2dx3 = dSdx3 =idAdx3 (29)

n dS =:,u dsdx3

with

1/2 3 3 2
= [ : (g/a = 1 -2cx + (x ) b

a Ia 1, b = lbal, c = 1/2 b, g Ji

"w'.ere b and c denote the Gaussian and mean curvature of A,
respectively; a more elaborate account of the results
recorded can be found (e.g., F35]).

4- MECHANICAL DISPLACEMENTS, ELECTRIC POTENTIAL AND
RESULTANTS FOR THE PIEZOELECTRIC STRAINED LAMINAE

In mathematical terms, the regular, finite and bounded
region of piezoelectric laminae is defined by the fundamental
assumption (28) which allows one to treat the laminae region
as a two-dimensional medium. In addition to (29), all the
field variables together with their derivatives are assumad
to exist, to be single-valued and continuous functions of

(x , t) in the closure of laminae region with no singulari-
ties of any kind, and not to vary widely across the thickness
of layers. Accordingly, the fields of incremental mechanical
displacements and electric potential which are chosen as a
starting point of derivation are expressed by

-m m 3 mu m + x w. ; m=l,2,...,N 1
1 1 1
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and
M M 3 m

:m •m x m=2,3, .. ,N-Il (32)

where (v., wi, f , are unknown a priori, independent awJ

functions of xa and t, only. In (31) v v 3m and w andm

w3  represent, in this order, the extensional, flexural and

thickness motions of the m-th constituent. Also, the use of
(31) was shown to account for the coupled motions of laminae,

as indicated already by Drumheller and Kalnins [39]7 and the

author F71. Moreover, in (32) , m=1 and m=N are excluded, since
the electrodes are perfectly conducting. When an alternative
potential difference is applied to the electrodes, one reads

N =' , = -, ' " : - = cosLt (33)
0

where 0 is a constant and w the circular frequency.
0

In the piezoelectric laminae, the constituents are adhered
one another and no relative deformation are permitted at
their interfaces. Thus, the continuity of mechanical
displacements and electric potential on, and that of trac-

tio)ns and surface charge across, the bonding interfaces A
m,m+l1

are maintained. First, using (31), the continuity of incre-
mental mechanical displacements is written as

m ( h m m+l mz m+1 m+l

no sum over m; m=l,2,..., N;on A mm+IXT (34)

This represents 3(N-1) constraints and reduces the number of
the independent functions of displacements, 6N, in (31) to
3(N+I). The independent functions are chosen as

Sm(35)vi , w. ; m=. ,2, ... (

and the rest of the displacement functions is expressed by
m I m r

V. + z r w ; m= 2,3,...,N (36)
1 1 rm 1r~l

with

zrm = (2 - 6 ir -mr )h (r) - mrZ (m) (37)



204

in terms of them.

Next, the continuity of electric potential is similarly
expressed by

m +(Z + hM)m m + (Zm+1 _ hm+ 1 m+l (38)

no sum over m; m=2,3,..., N-I,

on A mm+IXT (39)

and

2 +.2
' + (22 - h 2,' on A 1 ,2XT

N-1 + (ZN + hNl )N on A NXT (40)

In view of the constraints (39), the (N-3) independent func-
tions of electric potential are chosen as

4) M ; m=2,3,...,N-2 (41)

The dependent functions of electric potential are expressed
by

2 h 2 )y 2S= t' - (22 - h )

+z m m= 2,3...,N-2
r=2

N-2 rN-i /h N-)1 + (i+z /h N )z h
=-(ZN-I Ni ZN-I Ni = r

N-i N-2 r
(i/hN~1 )H" -Z h wr) (42)

r=2 r

in terms of the independent functions (41).

Evidently, the linear representation (41) and (32) and the
gradient equations (2) imply a distribution of mechanical
strain for each constituent as

3J r-r-uijO

and that of electric field for each layer as
R 3)r
/ IZ (x ) E (Xa t)] (44)

1 r=0 i

of which the explicit expressions are obtained in the next
section.
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Mow, in accordance with the linear representation ahove,
various field quantities are averaqed over the thickness
interval of each constituent for the subsequent develop-
mont. Thus, the two-dimensional incremental resultants
of stress are defined by

a ' -- , ] 3, x 3 3[ s, ,: V = :'z[ , 'x 3) t dx3
(45)3 313 a 33

< R'. N3 3 ] = [Z[(l,x3)ta3 t 3 3 ]Ndx'

and those of initial stress by

a ýýa 33 3
0No R , N I =f [t(X, , t dx (46)

those of acceleration by

ii =u v i{i B .i .. ii
A I + , B1= IlV 1  + • 2 w (47)

with

'_ I I - 2c 1 + bI (48)
n n n~1 In+2

w..here

In = Z (x3 ) ndx [(z+h)n+l (z-h)n+l]/(n+l)

n = 0U , 1 . . . ( 4 9 )

those of traction by

q 33 a(3 3 3 33(ci , p :(• 0 t *) , (q , p ) =1Jt

3at (x = z+h, z-h) (50)

and

(r' , s-b t [v _B 1v3 + x3 (we - w3

+ Wt3 w3 at (x 3=z+h, z-h) (51)
0

3 3 +bUw )3
(r f S3) +tb v + x (w3 ,a a w

0~~ ~~~ 0 £v3O ' f

+'t33 w } at (x 3=z+h, z-h)0 3

those of loads by

i a ,a 3 3
(N ~, M~) W T~i(1f x )pdx (2
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(3 3 3 3 3

,N , M.) .f Z .(1, x )wdx

and

St p• 3 3 3(S., ,) P (P.P ) and (S, P.) : (PT.)

3at (x3= z+h, z-h) (53)

and

q, 1 = r - s (54)
i i i i ri i

m (z+h)q - (z-h)p ; m = (z+h)r - (z-h)s
o0 0

Resides, the two-dimensional resultants of electrical
displacements in the form

(Fl, Gi) : Z( 1 , x3 ) Di idx3 (55

those of surface charge by

(d, f) =(oD 3) at (x 3=zz+h, z-h) (56)

and

D = (z + h)d, F = (z - h)e (57)
and those of edge-surface charge by

(F, G) = 1 (1, x3 )uldx3 (58)z

are introduced. In (45) - (58), the resultants of stress,
initial stress and electric displacements are measured per
unit length of the coordinate curves on A, those of
acceleration, surface load and surface charge per unit area
of A, and those of edge-load and edge-surface charge per
unit length of C. Moreover, in terms of the foregoing
definitions, the continuity of tractions and that of surface
charge by

(q + r i)m - (pi +Sim 0 dm - fm+l 0

on A XT (59)m, m4-l

are given; the resultants can be similarly referred to the
Am of each constituent in place of A,735].
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5- DISTRIBUIIIONS O[-' STRAIN AND ELECTRIC FIELD
MACROSCOPIC CONSTITUTIVE EL'UATIONS

The components of incremental strain of order (r) are obtain-
ed by use of the appropriate term of the unified principle
(13) , namely,

N
13 sdt Z.. - 1/2(u.

13 T A r lZ 1 1;j (60)
+ u. ;i)1i6tij}3(r) PdAdx 3 = 0

By inserting (31) into this equation, and then performing
the integrals over the entire thickness of piezoelectric
laminae, recalling the resultants of stress (45), one finally
obtains the distribution of incremental strain in a varia-
tional form as

•,13 • a13 dt" Z s -e. IN aN
13 -T Ar:0I a as

) , + ( s -Yes ,, •

+ oSa3 -e a3 + s 33 6 3R

(S~~~~ IT
3 3 , (r)d~a 3 ~ ~ )R

+ (os33 - e 3 3 ) (r4 dA :

This equation leads, as its Euler-Lagrange equations, to
.. = e.., .. = E.., s. • Y..•(6 a

o ij ij' 1 i ' ij 2 (62a)
:.;here

eO : 1 /2 (v + v - 2bv
:4: S 3:a cS 3

(m) mea• e' _+ 112 Z z (w + W -2b w )(r)
at r=l rm a :2 3 : aS 3

e3 1 l/2(v +bav + w )' ; m+2,3 ... , N~~i±a 3 A (t C c

e( e) + 1/2 Ew(m) 1+ z (w + b'w- ) (r)w+] (62b)

(M) (T-0e(33 w ; m=1,2,..., N

G (I

E' = 1/2 -- b V,, +: - V v 2c + W
+S : - 2c 3 av3
+ W - 2c w 3)'
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m= /2[(-bv ob + 2c va S v: B bv 0: a aB 3

(i(m)

0C S :,,-2c,, W3

m bo
S 1/2 ( - w 5 - bOwL a+ 2c ) . r3
r l r= 1 : • w (62c)

C (m 1/2 w3 • M)=0 ; m~l,2,...,N

-Y'Y )= 0 m , , . ,3 33

In deriving (62), the covariant derivatives of the dislace-
ment vector are expressed with respect to surface metrics
by means of the identities as

U (U - b u)• ,... u3,3 (63)
-; 0: 3 U3 3  U 33

Here, an overbar indicates the displacement components, as
defined in (22)

In a similar manner, the distribution of electric field is
found by use of the part of (13) in the form

23 (r) 3dd
223 =Tdtr [- { r •D(E +( (r Adx (64)

23 ýT A r=2 Z ' i ,

This yields the distribution of electric field in a
variational form by

6123 rTdtfAN E ( E. - e.))5F23 " ~r=2oi

and + ( Ei -• )ýGi] (r)dA 0 (65)

E. = e , 1E =. (66)o li i i

Here, the denotations by

(2)e (z - h 2)
m (67)

erm m zrz ,a m , ,Sr=1 rm 'ý,C m=3,4,.... N-2
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(NI2-I N =

e(N-i) (I + i/hN-i - h
N-: N-N r=2 r ,2•

e3 :,(m ; m:2,3,...,N-2
e3

(67)e(Nl)N-2 (r)
e( :1 

-i/hN_ (•" - I h %3 N-I r=2 r

S() - • ) ; m=2,3,... ,N-2

(N-I N hi/ Nl-i=2 r , C

I , , (m )e' = e. =. = = 0 ; m=2,3,...,N
1 1 1 1 3

are introduced.

Now, the distributions (62) and (66) are substituted into
the constitutive part of (13), and then the integrations are
carried out with respect to the thickness coordinate and the
resultants of stress and electric displacements are used
wherever feasible, with the results in variational form by

ýJ12 N Q ýa3 a: =dt C L(N" N )6:+yI -M )

12 A Ar =1 c :ec a - c

+ (K - K a +Q - Q )5e + (R -R )5E
c Sc 3 c -3
(33 33 (r)

+ (N N3 ) dA = 0 (68)c -331

and

22-i 2 = r It., (Fi - Fl)6e.22 'T" Ar =1 i (69)

+ (G - G i) 6 ( ) = 0
c

The Euler-Lagrange equations of (68) and (69) are the
macroscopic constitutive relations in the form

Na• N• M• CLKB CL8

- N 0, M - M' 0, K K 0
c c c (70)| C N 0L R 'L - R0 N 3 3 _ 3 3 : 0

n Cc 0, P, Rc =0, N -N = 0

and

F -F = 0, G -G =0 on AXT (71)
c c

Here,



210

N' M -cS, Ka) F (C , , C2 a kl (s )T

- (C , C C ) k Ek)

*(Co Ca) a3kl T k a3 T
-Q R) c ( I (Ski - (Co, C 1) (Ek)

rý, ~ ~ r.%%1l
N33c c33ko (SlT• k33t° ( T

S3=C - kC (B) on AXT (72a)

and

(F', Gl) = (C C C C ) ik( T
C 0' ik (C0, C1) (Bk) j72b)

In the above equations,

kl) = (eki, ki ) ,kl (EB) k (ek E:k' 0) (73)

are defined. Also, the elastic stiffenesses by

ciJ (Cc C n Cnn2 )-k (74a)

with

c .k CiiJ...k (74b)n n

are introduced.

6- GOVERNING EQUATIONS OF INCREMENTAL MOTION

In this section, within the order of approximation of the
linear representation (31) and (32), the macroscopic stress
equations of incremental motion, the macroscopic charge
equations of electrostatics and the associated natural
boundary and initial conditions are systematically derived.
In the derivation, Mindlin's method of reduction is followed
(see, e.g., E40], and the results are expressed in both
variational and differential forms. Also, the governing
equations of piezoelectric biased laminae are fully stated.

To begin with, the first term of (13) is written in the form

jl N ikii :!dtfA Z •""(t + tikuj k)
11 T A r =1 Z + 0 u ;k i (75)

_•aJ]]6u }(r) udAdx3 = 0
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for -All tho constituents of piezoelectric laminae. By
substituting (31) into this variational integral, using
various relations between space and surface tensors andtheir derivatives, performing integrations with respect to
the thickness coordinate and recalling the resultants ofstress, acceleration and load in Section 4, one finally
arrives at the variational equation of incremental motion
as

6TII N " i + i + i Ai7
"" Tdt r4J[(V' UJ + 1 + 1 A )6vi (76)

T r10 0

+ + T + M + M 0B 6w i (r)dA 0

where
V' :V•• 3 •3a

- - b a, V + b V
: Ot 3 (77)

, 3 a3 33 a 3
."W -W N + bc

and

Ua U -t U , b 3 + b Uo a a o o o 0

T- bcT -0Qo'(v -o b ) %
0 0 S~ 0 0 8 -

33 a+ (Ro N )w

3 T3 N33 3T' =T3 + bT- (RT + )w

a -430 ( ,-+b w,) (78)
In these equ ations, the denotations of the form

b W a b K
V -• -'• b_ b Md , W' - -:bMK

aT a

V 3 Q , W 3 R (79 a
and

v +M 3 a a3Ua= N (v• _ b-v 3 ) + M-(w _ b w + 3o o : a 3) <Qow
o o 3 o 3, ( +bv)+M• (w3 b~w)

Ua3 : '3w3 +N (3 aa 8

T f=O M (Vo :-'o v ) + K (w•O : -bo~w)

o : a 3 o :a ay 3 0

T nM v + bN v ) + K (w + b w)

o 0 3 , 8 o w3, 8 a
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are introduced in terms of (45)-(59). As a last step, using
(36) and considering the continuity conditions of tractions
(59), the macroscopic stress equation of incremental motion
is expressed in variational form by

j i dtf N i (r) i, -

11 *T A r= 1
N (80a)

+ •li + h'N (i) (r) +h '(c', +bi ,)] wi,
r=2-. , (m) N i (r) l,6 m

in) N Z (•) (r + 2h bi"16w (i)
,r-2 mr m i

+ -, (2h - h' -2h")ri'' + 2h"bi"]6w"}i dA 0
i

with

Ti i i W +
%7V + U -DA, W + T0 0

bi i i ci i i(8b
b q + r , c p + s (8b)

0 0
in terms of the variations of independent displacement
functions (31). From(80), the macroscopic stress equations
folllow in differential from as

N i i (r) +N i (r)
i(V + U- (P )r--- 0 rrl

i iN i i (r)(W + T 0 + hWE (V + U () + h'(c' + b")r=2 N i (r)

( ) + h'W (.A on AXT
r=2

i + Ti (m) + i V ( + Ui) (r) + 2h bill
O r~m mr o m

i (in) N i (r)P(C i) + Z z (pA
r = mr

(,TI + TI ' -(2h - h' - 2h")(V1 + Ui) + 2h"b"
o 0

=(QBi)' - (2h - h' - 2h")(PAi)' (81)

This equation or (80) represents 3(N+l) equations for the
piezoelectric biased laminae. In deriving (801 and (81),
details of lengthy computations are omitted; they are,
however, given in a recent report [35].

In a similar manner, to derive the macroscopic charge
equations of electrostatics, from (13), the variational
volume integral of the form

Xj21 - - dtl X3 [ j, (rD wdAdx 3  0 (82)
21 -T 'Ar 2- ;i
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is eva! uateI for all the layers of ;'<sl~!tr1. lao in>-.
In .]oinq so, (42) is inserted into this edjation a:Q t..e
ineogrations are carried out with respect to th.e t. chik. i

ioordi te , and then the variationa!1 integrai H?) is
expressed by

2 1
d2 t T AE= [(F +d - f) ¾

+ (G• _3 ](r)
+ 0 -73 + D - F),,]r dA = 0

with '= = 0. This equation is now written with
respect to the variations of independent functions of
electric potential (41) as

21 N-3 3 N-i (m)
21 = =2 [m :M +m + m mr r:W

+ N -(z - h :1 2
N- 2 ::C N-2 N-2 -

+i I+ Z /h h)h FA
N-i N-i -2 N-.

3 2) IdA

with the denotations by

= r2 - Z + I- 1 '" ) j h z
7r 1 - mr N-I'N-I •N-1,rm ý7r i"

33h "a r• 3:- F3 + h/' FN_
- ,M - ' N-i'I N-I' 1 F N-i N-i (84b)

h the continuity of surface charge (59) is considered.
The Ecier-Lagrance e--uations of (84) are readily written as

L 3 N- i
3+ x+ F : O ; m=2,3,...,N-3
mI n rn• Mr r:

z ( h )F 3
N-2 N-2 N-2 N-2 : N-2

(85)
+ + ZN~i/hK, )hN, 2 F 0 on AXT

w~ich represent ('-3) equations. Thus, the macroscopic
cnarge eciuations of electrostatics are expressed by (84) in
*variational form and by (85) in differential form.
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Paralleling the derivation of the macroscopic divergence
equations (75) - (85), the mechanical and electrical,
natural boundary conditions of piezoelectric biased laminae
are obtained by use of the variational principle (13). The
tractions of biased laminae are prescribed on a part
St(=CtXT) of Se and Sif and the surface charges on only Se

To begin with, consider the pertinent term of (13) for the
mechanical boundary r'onditions, namely,

I 11 f d Ntf f f [. - u (tj
11 T c Z 1 zE

+ toakuJk u} (r) dsdx 3

+ lf[ -n(t3J+ t 3 kuJo k)]6uj'dA= 0 (86)

After evaluation as before, this equation leads to the
natural boundary conditions of tractions in variational
form as

ii* : TdtL N -u (V + u 6v'
11 T tr 1 0 3

a 0 r=2 a

+ Uj)] (r) ;' +• {[M -u (Waj+ TaJ)] (i)
0 a 0

rn=1
N (in) rMJ3

+Z z N -. (VOJ + u2J)l (r) w m +
r-m mr * a o0

,, J

-u (Wa] + TaJ)] - (2h - h' - h") N.
a 0

Vaj + ua3) ]"}sw"')ds (87)

+T'-fTdtL(P*I - c3'1)v! + h'(Pj - c •F)'w.dA = 0
if C3

which yields readily the boundary conditions of tractions
as follows

Z N (Vaj + - 0 (88a)

r=l Ot 0

[M3 -U (W + Taj]' + h J a a- • J )l = 0;
S0 ir02

( + To0 m=2,3,...,N-I
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+ _7 [N - (V'+tj])] + (r
r m mr c a

0 on C tXT (S8a)

- 2` - h' - 2h")[N) -U (V -I + UrJ)i ' = 0
o .0

and

0( + sJ' : 0 on S ifXT (88b)

in differential form as well. Besides, the natural boundary
conditions of mechanical displacements by

V' - v = , 0 - mwi = 0 on C XT
i 1 i* u (89)

* it
v1 - *" = 0 w" -Y. = 0 on S XT
1i 1 1 uf

are recorded.

In like manner, substituting (40) into the variational
surface integral of the form

21 N- )1
= I dt 7 -Z Z D )21 -T r=%

+ x 3 <)J (r) ,dsdx 3 
- 0 (90)

and evaluatinq it, one reads

T21 N-I
2 1Jdt E•Z D( F -21 T r=2 c

+( G' - C.) 1  )ds = 0 (91)

in terms of the resultants (55) - (58). By use of (42), the
natuaral boundary conditions of surface charge are expressed
in variational form by

21 N-3 (m) at N-I m
52 =;dt (1 2  LE.(m) -, (Xa +X X+ r)j0=

21 m2 * m r m mr r

+ (H 2- + (z - h N- (92)'N-2 N-2 N- N2
*• (N-2

+(l+Z h )hFNI] F 5 Ids = 0
ýN-i N-i N-2 N-l (id

and those in differential form by

Hm c N-1 F t)

m + mriE r N-i=2F) 0 n=2 N-3(93)
r~m
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HN-2 _v Ot Ci
.* EX N- 2 + (ZN-2 - hN- 2 ) FN 2

+ (1 /HN_ )hN 2 N_ = 0

along CXT (93)

Here,

Hm m - (h/ N-iN-i r
* G* m hN)G* +E xFm ; m=2,3,...N-3

r =m (94)

N-2 N-2 N-I
H * G-* - (h -2/h N-1). - (zN2

-h )FN-2 + 1+Z /hN )h FN-1 (95)N-2 N-i N- N-2-h_22" + (1 + ZhN-2 (,5

with

(F,,G,) M Z (1, x 3) (m) idx3 96
m

are introduced.

Lastly, an evaluation of the volume integrals I of (13)

yields the natural initial conditions of mechanical
displacements and electric potential by

'* ' a aZ t • *V(Xa,to) _ i (X ) g 0, (X , t -•*I (xa) = 0
1 0 1 1 om xa *m a m -*ma

wi (x ,t ) - (xa) = 0, w.(xa't) -;i (x ) : 0

m=1,2,..., N (97)
Sto) *m xa

Ym (x , t n (x )( 0; m=2,3,..., N-I
0 1

on A(t ) (98)

where a are given functions.

Up to now, the set of two-dimensional, approximate equations
of piezoelectric biased laminae is systematically and
consistently derived by means of the unified variational
principle (13) together with the linear represcntation (31)
and (32). The electroelastic equations are given both in
variational and differential forms at the perturbed state.
Similarly the governing equations can be derived at the
unperturbed state for the static behavior of laminae at the
unperturbed state. This is recorded in [31;.
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7- A DIRECT METHOD OF SOLUTION

In this section a general algorithm is pointed out which is
based upon Kantorovich's method for the fields of mechanical
displacements and electric potential, as an alternative of
the macromechanical analysis of piezoelectric biased laminae.
The algorithm starts from the integral principle of (3) in
lieu of its Euler-Lagrange differential equations and it
rests entirely upon a selection of the fields for each
constituent under the ad hoc assumptions for the
piezoelectric region in Section 4. The method can be
readily and successfully employed by means of high-speed
digital computers for the macromechanical analysis.

To begin with, the fields of incremental mechanical
displacements and electric potential are expressed by

u- (xJt) = R [fpqr (x ,t) f 3 (x3 m
p+q+r=0 

9 aSR (99a)
n i,t R(et g(3]

S( t) = [gpq (x ,t) g

with p+q+r=0
[fpr gqr•m •qr(t)up. (x ), (t)P (x•

pfqr g m ot pcmpqr pqr 1 pqr pq (x

[fr(X3 ), gr(X3 )x = (x 3)r (r)

Here, (x and ' ) are the functions to be deter?;i ned, whereas
(u q pqr pqr

(uipq , pq) are the approximating functions to be chosen

appropriately in order to satisfy all or some of the given
boundary conditions; the rest of constraint conditions can
be taken into account throuch Lagrance multipliers as

illustrated by the author L5J . The approximating functions
should be selected as simple as possible so that operations
involving them can be carried out easily.

With the help of (99), the evaluation of the variational
integral (3) leads readily to a system of ordinary differen-
tial equations in terms of a (t) and (t). The systempqr pqr
of equations can be reduced to that of nonlinear algebraic
equations for the case when vibrations and wave propagation
are considered in the piezoelectric biased laminae.
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The results with some applications are presented in detail
in a forthcoming report [35].

8- ON SPECIAL CASES

Various cases involving special geometry, material and
incremental motion of piezoelectric laminae may be readily
investigated with the help of the general results derived in
invariant form in the previous sections. Here attention is
first limited to the case of piezoelectric plates in which

the curvature effect vanishes, namely, ba=p=O (cf.,[24])

The results for one layer (N=l) agree with those [26].
A complete linearization in the results leads to the linear
theory of piezoelectric laminae. In such a case, it is
shown by logarithmic convexity argument that the conditions
(87) - (98) are sufficient to ensure the uniqueness in
solutions of the electroelastic equations of laminae. This
and a variety of applications of the general results to
particular problems are given in a recent report [35]_
Further, special classes of materials for the constituents
of piezoelectric laminae may be considered in the macroscopic
constitutive relations (68)-(73), and also special kinematics
may be introduced in (31), (32) and (99).

9- SUMMARY AND CONCLUSIONS

Established herein is a systematic and consistent derivation
of the two-dimensional electroelastic equations of
piezoelectric laminae under a mechanical bias by means of
the unified variational principle (13) together with the
linear representation (31) and (32). The electroelastic
equations given in both differential and variational forms
govern all the incremental types of laminae motions. The
variational principle generates all the fundamental equations
of piezoelectric strained media. The results contain some
of earlier results as special cases [35]. Lastly, an
extension of the present results to viscoelastic and
electromagnetic layers will be reported elsewhere.
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CHAPTER 7

NUMERICAL ALGORITHMS FOR DYNAMICS OF PIEZOELECTRIC LAMINAE

ABSTRACT

Numerical algorithms are developed for the macromechanical
analysis of dynamic response of a piezoelectric strained
laminae. The laminae which is under a general state of
mechanical, static bias may comprise any number of bonded
layers, each with a distinct but uniform thickness, curvature
and electromechanical properties. In the first part of the
paper, a direct method of solution based essentially on
Kantorovich's method is presented for the macromechanical
analysis. The effects of elastic stiffenesses of, and the
interactions between, lav-r of the laminae are all taken
into account and all the ontinuity conditions are
maintained at the intcr Aces of layers. The resulting
equations accommodate the extensional, thickness shear and
flexural as well as coupled incremental motions of the
laminae. In the second part, the governing equations of
piezoelectric s'rained laminae are recorded and then the
method of momoats is described, as an alternative, for the
macromechanical analysis. In the third part, special
cases involving the geometry, motion and material properties
of piezoelectric strained laminae are indicated.

1- INTRODUCTION

Piezýoelectric laminae and/or composite elements with their
desirable vibration characteristics for ultrasonic applications
are of recent demand in different technologies. The use of
t,.ese elements, the basic ideas underlying their sum and
product properties and the mathematical models to describe
their dynamic response are elaborated [1-3 . The research is
stili quite active on the design, and in determining the
dynamic charasteristics, of laminae elements. Basically,
two types of mathematical models exist for the dynamic
analysis of these elements:the effective modulus model and
the effective stiffeness model. The effective modulus
model which replaces an element by a representative homogeneous
medium is relatively simole, but it abrogates the mutual
coupling of layers, and it is generally suitable for the

223
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static analysis of laminae. The effective stiffeness model
which incorporates all the essential features of layers
accounts for the static as well as dynamic response of
laminae. On the basis of these models, investigations were
recorded to be abundant for certain vibrational modes of
piezoelectric laminae with polarization in different
directions, whereas to be rather scanty for derivation of
the electroelastic relations of laminae which accommodate
all the types of vibrational modes [3].

It was Mindlin [4] who first described to deduce, in a
consistent and systematic manner, lower order equations from
the three-dimensional equations of elastodynamics. By use
of Mindlin's method of reduction, the author [5] obtained a
system of two-dimensional, approximate governing equations
for vibrations of thermopiezoelectric laminae. Karnaukhov
and Kirichok [6,7] set up the governing equations of laminated
piezoelectric shells by taking into account the effect of
viscosity and temperature. Also, Evseichik, Rudnitskii
and Shul'ga [8] derived the electroelastic layers. More
recently, the author [9] extended his works [5,10] so as to
derive the macroscopic equations of a piezoelectric laminae
under a bias. Mikhailov and Parton li] reported analytical
studies involving certain vibrations of multilayered piezo-
electric elements subjected to polarizations in different
directions and various electric and/or mechanical loading
conditions using standard approximate methods of numerical
analysis. In these studies, no results were provided yet
for the existence and uniqueness of solutions (cf., [5] for
the uniqueness only), and also a unified algorithm for
numerical solutions is still unavailable; the latter is
taken up in this paper.

Various methods were used for numerical solutions of the
initial-mixed boundary value problems defined by the governing
differential equations of one and two-dimensional piezoelements
[2,3] . Of the methods, the method of Green's potential
function [12] , the Ritz-Galerkin method [13] , the asymptotic
method [14] , the finite difference method [15] , the method
of least squares [16] , the Fourier expansion collocation
method [17] , the method of Laplace transform [18] , the
method of fast Fourier transform [19] , the method of z-
transform [20] , the finite element method [21,22] and the
boundary element method [23] were mentioned. Numerous
treatises appeared on the applications of these methods in
different branches of electrical engineering. Noteworthy
is d first textbook by Silvester and Ferrari [24] on the
finite element applications and the treatises by Harrington
[25] and Wang [26] on the field computation by the method of
moments. The method of moments with desirable features in



225

electromagnetics may form a universal approach to the
macromechanical analysis of piezoelectric elements, though
it has no application yet. This method is now described
for the analysis of dynamic response of a piezoelectric
jaminae. Besides, a direct method of solution which is
essentially based on Kantorovich's method 1271 is presented,
as an alternative, for the macromechanical analysis.

Briefly stated, the notation to be used herein is given
in the remaining of this section. The next section contains
a summary of the fundamental equations of piezoelectric
medium under a mechanical bias; they are recorded in both
differential and variational forms. Section 3 deals with
the geometry of a piezoelectric laminae, and also, for ease
of quick reference, the relations between space and surface
tensor are recorded in this section. The strained laminae
may comprise any number of bonded layers, each with a
distinct but uniform thickness, curvature and electro-
mecnanical properties. In Section 4, a direct method of
solutions which is based on Kantorovich's method is described
for the macromechanical analysis of dynamic response of the
piezoelectric strained laminae. In addition, the method of
moments is developed as an alternative of the macromechanical
analysis in Section 5. Special cases involving the geometry,
motion and material properties of piezoelectric strained
laminae are presented in Section 6 and concluding remarks
in Section 7.

N o t a t i o n

In the paper, standard tensor notation is freely used in a
Euclidean 3-Space E. Accordingly, Einstein's summation
convention is implied over all repeated Latin indices
(1,2,3) and Greek indices (1,2) that stand for space and
surface tensors, respectively, unless they are put within
parantheses. In the space E, the xi-system is identified
by a fixed, right-handed system of geodesic normal convected
(intrinsic) coordinates. All the field quantities are
described in Lagrangian formulation, they are indicated by
a zero index in the initial state, by an asterisk when they
are prescribed and by an overbar when they are referred to
the base vectors of layer midsurface. A superposed dot
stands for time differentiation, a comma for partial
differentiation with respect to the indicated space coordinate,
and a semicolon and a colon for covariant differentiation

.. ..I..
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with respect to the indicated coordinate, using the space
and surface metrics, respectively. The index (m) which takes
the values 1,2,...,N refers to the m-th constituent from
the lower face or first layer of piezoelectric laminae, and
also a prime is assigned to stand for the upper face of a
layer and a double prime for its lower face. Moreover, B(t)
refers to a regular, finite and bounded region B of the
space E at time t, B(=BUýB) to the closure of B with its
boundary surface B, T to ýhe time interval [to,t 1 ), to
the thickness coordinate x , Z to the thickness interval
rz-h,z+h] with the layer thickness 2h and BxT to the domain
of definitions of the functions of the snace coordinates and
time.

2- FUNDAMENTAL EQUATIONS FOR INCREMENTAL MOTIONS IN
PIEZOELECTRICITY

In the Euclidean 3-space E, let B+ýB with its boundary
surface ýB, denote a regular, finite and bounded region of
piezoelectric elastic medium at its reference (initial)
state at time t=t . The piezoelectric region which is
subjected to static initial stresses is in equilibrium.
This initial (unperturbed) state acquires its spatial
(perturbed) state by small incremental motions superimposed
upon the finite static deformation of the piezoelectric
region at the time interval T= Lt,t ) The elastic region is
referred to by a fixed, right-handeý system of general
convected (intrinsic) coordinates x1 in the space E. The
entire boundary surface 5B consists of the complementary
regular subsurfaces (cBt,ýB) or (ýB , iBd), and the unit
outward vector normal to 3B is denoged by n. The domain
of definitions for the functions (xi,t) is denoted by
BxT, where B(=BUýB) being the closure of the region. All the
field quantities of the piezoelectric region are described
in Lagrangian formulation.

Now, the three-dimensional fundamental equations of incre-
mental motions of the piezoelectric strained reaion are
recorded [28,29]

Divergence eq u at ions

£J (tiJ+tikuj J =0 in --XT
o ;k

,=D 0 in BXT (2)

.. .........i
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ti) ti] initial and in,:remental str,.,J3 tnn~zr3f tO

u .. Incren 1 mechanical d sp)acero2- v,, cr-- -

-mass density of the ncom1hd

a Lagrangian acceleration vector (=d ")

Di electric displacement vector

Cr ad i e n t e a u a t i o n s

K. =SL 1-(2 . +u. )=0 in B<X'P (3)

M. =E.-(-ý i)=0 in BXT (4)
i 1I •

S.. strain tensor

E. ouasi-static electric field vectorI
.} elec-tric potential

C o n s t i t t i v e r e 1 a t i o n s

1 -i i kI kij
Li =t --- S -C E )z0 in BXT (5)

k k
K- : D-- = c J . 0 in BXT6

e r e
ij.]k j ]

elastic constants (=Cjikl =C )

ri~k ,niezoelectric strain constants (=Cik)

_.ij dielectric permittivity (=C i

B ou n d' a r c c o n d i t i o n s

= t ÷ +t u )0 on 3BtxT (7)

K on 3B XT 81 1 1 U

L,=•,-niD=0 on 3B XT (9)

on TB XT (10

with
•J~n<ij(11)

1
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Sji3 ti ik uj (12)
o ;k

where

-J Trefftz stress vector

a surface charge

I n i t i a l c o n d i t i o n s

ui(x ,to)-V.(x )=O

ui(x ,to)-w 1 (x )=O in B(to) (13)

The differential governing equations (1)-(13) of incremental
motions are alternatively stated in variational form
[10,30,31] by use of the principle of virtual work (or
Hamilton's principle). The principle of virtual work is
stated for the piezoelectirc strained region as an
assertation of the form.

-_5+6V+5 W=o

with the denotations
i 1 • i, V

5E=1B(TJ6sij-DI 6Ei)dV , 6==6BPU Ui dv,

W= r;B (T.6ui+a.6$)dS (14)

where 6 W stands for the work done by external mechanical
and electrical forces, and 6* with an asterisk is used to
distinguish it from the variation operator 6. In equation
(14), the quantities of the form.

TiJ= tij+ti S =s. 1 k T i=ti+t (15)

0 ij 2lj+• u ;iUk;j 0

are introduced. Integrating equation (14) over the time
interval T, carrying out variations, applying the Green-
Gauss transformation of integrals for the regular region
B and implying the usual arguments on incremental quantities,
one finally arrives a two-field variational principle [10] as

6X{ui,'}=!T dtfB(Zikui O ) dV+fT dt B(C *ui+.C* 6ddS=0

(16)

*
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which yields the equations of incremental motion (1), the
charge equation of electrostatics (2) and the associated
natural boundary conditions of tractions and surface charge
(7) and (9). The variational principle (16) includes the
rest of the governing equations (3)-(6), (8),(10) and (13)
together with

6uii ==o in B(to0 and B(tI) (17)

as its constraint conditions.

3- GEOMETRY OF LAMINAE

i
With reference to the x -system of general convected
coordinates in the Euclidean space E, a thin piezoelectric
strained laminae V+S, with its smooth boundary surface S
is considered at its initial (unperturbed) state at time
t=t and it is brought into its spatial state through some
elastic process at T=Ct ,t ). The laminae is composed of
N constituents: two per~ec~ly conducting, lower and upper
face electrodes and (N-2) piezoelectric layers between them.
The lower face electrode is indicated by a prime or m=l,
the layers by m=2,...,(N-l), and the upper face electrode by
a double prime or m=N. Each constituent may possess
distinct but uniform thickness 2 h (m=l,2,...,N), curvature
and electromechanical properties. mThe midsurface A of first
layer x 3 =0 is taken as the reference surface such that

3 3
x =-h =-h' , x =2H-hI , f(xa )=O (18)

define the lower and upper faces, S and S f, and the edgeboundary surface S of the laminae. The surface S is taken• e e
as a right cyclindrical surface whose generators lie along
the normal to S i and S •, and it intersects them along
closed, non-intersecting smooth Jordan curves C m32]. The
bonding surface between the m-th and (m+l)th constituents
is denoted by A the midsurface of the m-th constituent
by A and the m'm+l'unit outward vector normal to A' or
A" by n. and that to the edge boundary surface of the m-th
constituent by v .1

3
On the reference surface A, x =0 is chosen positively upward
and the xa- coordinate curves form a system of curvilinear
coordinates. In addition, a system of local coordinates
xi situated on A is introduced by

m
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X=xa X 3=X3 -Z, m=1,2,...,N (19)
m m m

Here, z is the distance between the parallel midsurfaces
A and Am , hence, the parametric equations of the form

x3= 3
, x -z =0 (20)

mm

and

3-h =0 , x3 +h 0m m m+l +hml
3 3 (21)

x -(z m+h m)=0 , x -(z m+l-h m+)=0

with
m

Z r7l (2- 6 6 )h (22)
m rtl ir- mr r

clearly define the midsurface A and the bonding surface
A mm ,m+l"

i
In the x -coordinate system, the position vector P of a
generic point P in the laminae space V takes the form

P(xi)=r(xa )+x3 a3 (x,) (23,

with

a .a =0 a 3.a -= (24)

Here, r represents the position vector of the projection
of P on, a =R (xO) the covariant base vectors of, and

t the unit vector normal to, the reference surface A.
Thus, the base vectors,and metric and conjugate tensors of
the space V are defined by

9a+3 B 9 Ia • 9:3 3
=.a a+ 3a :aB 9 a-(I a 9 9 =a =a (25)

9 a +)( a , =x a ; B-- - -3 -

and

9c=,= •Ba , a =(P)a (l)B a , 93=0 , 933=1 (26)
a t sie V th 3orm

with the shifters of the form
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CL S b .3 G( it + t b- a "I

P I (27)

and those of A by

a rs=a~ .as =9 (xo), aa 9 (xo) ac" af-<'

a 3 =a a3 =0, a 3 3 =a 3 3 = (28)

ain which a 3 1,b,3  , and c,,=b,,b, stand for the first,
second, and third fundamental forms of A, respectively.
By use of the shifters, the components of a vector field
of the form

i i -- a -- 3-- --3
X=X .9.= x 9  X a +xa 3= a + X a (29)

which are referred respectively to the base vectors of the
laminae space V and those of the reference surface A are
assaciated with one another as

CE C - 1 _- - a a 6 - l - x
at x X X c, X• (I

3 -3
X =X3= X =X 3  (30)

In addition, the relations between space and surface tensors
as

- -3 a -1 a -v _b -3

a; '" X b X,+b x) (31)

,;1a , 3;: 3,

a ,. a -3 = +b--
x ;3=U£ X 3' '3;a 3a aF B 3

3 -3
x x ~= x = x

; 3;3 3 3,3 ,3 3,3

and the identities of the form
8• v 3 1 ) bB a3- V 3S

0u ,1U X x \) ( i -P b x 3 ob 3
-1;a a 3C y

W3 -X 3 a + pb vS_ ( V 33 (32)
v 

(32
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Ba3 3 ) a 3) + 3
a X ; 3 :0 1

b (32)
PB a

are recorded for later use. Here and henceforth, colons are
used to designate covariant derivatives with respect to the
indicated coordinate by use of surface metrics and semicolons
those by use of space metrics. A more elaborate account of
preliminaries from the differential geometry of a surface may
be found [33].

='urther, the elements of volume dV, of surface dS on S, of
area dA on A, and of line ds along C are of the forms

1 2x3 3 3 3
dV='g dx dx dx = pdA dx = dS dx, n dS= pv ds dx (33)

Ot 1/2 3 x3)2
a (g/a) l- 2 x3 K g(x K

(34)

a=la t, g=lgij 1;

and

K ba , Kg=Ibal=b (35)
rn 2 a g B

where Km and Kg are the mean and Gaussian curvatures of the
reference surflce A. In the foregoing relatins, a and
its inverse (L )8 are of particular importance. They play
the role of shifters between space and surface tensors, and
they do exist when

Ix3 IR mini (36)

where R denotes the least principal radius of curvature
of A; tPin sufficient condition is evidently satisfied by
the fundamental assumption of the form

2H/JRminl<<1 (37)

for the laminae region.
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4- A DIRECT METHOD OF SOLUTION

In this section, a direct method of solution which is
essentially based on Kantorovich's method for the mechanical
displacements and the electric potantial is presented for
the macromechanical analysis of piezoelectric strained
laminae. The series expansions below has freedom to account
for all the significant mechanical and electrical effects
in each constituent as well as for the dynamic internations
of adherent constituents. The unified method of solution pro-
vides an alter.ative for the vibration analysis of piezoelectric
laminae under a mechanical bias (cf.,[5]-[91).

M e c h a n i c a 1 d i s p 1 a c e m e n t s and
electric potential

In mathematical terms, the fundamental assumption (37)
defines the laminae region and it allows to treat the
laminae region as a two-dimensional continuum. In addition
to (37), suitable regularity, smoothness and absence of any
kind of singularities are considered for the laminae region.
All the field guantities together with their derivatives are
taken to be exist and to be single-valued and continuous
functions of the space coordinates and time in the closure
of region V, and not to vary widely across the thickness of
laminae constituents. In accordance with these assumptions,
the fields of incremental mechanical displacements and
electric potential which are chosen as a starting point of
derivation are represented, applying Weierstrass's theorem,
by the series expansions in thickness coordinate as

U (x3 t (xi t) (Z- E f fpqr (x0It) If ((X )
p=O qc0 r=O i r

gpqr (x a't)g r(x 3 )} (m) (38a)

for the m-th constituent. Here, u. stands for the shifted
components of displacements defines by (29), and f. pqr and
c for coordinate or approximating functions, the system•pqr of which is assumed to be complete, and they are

expressed by
pqr, }:r (i)(t)u.pq (38b)

fi 'pqr pqr i pqr pq

The functions u and f are chosen appropriately to satisfy
all or some of pq the prescribed displacement and electric
potential boundary conditions. Also, the functions fr and

gr are known a priori, whereas apqr and 6 pqr are
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functions to be determined. The functions u and
should be chosen as simple as possible so that
operations involving them can be carried out easily. They
may be chosen as products of power series and trigonometric
series (or surface harmonics, Legendre polynomials and
alike) multiplied by certain functions which are introduced
to satisfy the boundary conditions. Further, a truncated
form of the expansions above, namely,

W (m) Q (i) pq (m) 3r
=p40 q10 r4O {apqr u , ypqrpq} (x3) (39a)

with

f r (xr 3 F;c(1)=a ( (2) 6 (3) (39b)pq pqr pqr pqr 'pqr pqr

is considered. In (39), .N=P+Q+R may be called the order of
approximation.

Continuity conditions

At the interfaces of laminae constituents, the continuity
conditions of tractions which result from Newton's third
law of mechanics are given by

i i
+( T =0; m=l,2,...,N-l on S XT (40)

(mn) (m+l) m, m+ 1

where S m.m+ denotes the bonding surface between the m-th
and (m+l)-th constituents. On the other hand, the
continuity of mechanical displacements depends on the
manufacturing process of laminae, and the constituents of
laminae are assumed herein to be perfectly bonded, and hence
the continuity conditions are expressed by

j(m)_ (m+l)= 0  ; m=l,2,...,N-l on S XT (41)
i , m'm+1

Moreover, the continuity of surface charge and that of
electric potential are stated by

m)+ a (m+1)=0, (m)-i (m+ l)=0 ; m=l,2,...,N-l on

S XT (42)m, m+

on the bonding surfaces of laminae.

Now, using equations (39) and (41) the continuity of
mechanical displacements is expressed by
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PQR upq zth) r

Pq q r (m) r pqr i (m+ 1)
p,q,r=0 pr i(i) pr1(l)

(43)

This equation expresses point by point continuity of

incremental displacements at the interface S and it
can be hardly satisfied. Nevertheless, with the help
of an averaging procedure, equation (43) may be stated in
a more suitable form by

P,Q,R i(m)
E V i =r 0; i=1,2,3 and m=l,2,...,N-l (44a)

p,q,r=0 pqr
with

wi -( t~~r (44b

Si(m) pqr) (m) (i) pqr) (m+l)dt
pqr pqr i pqr 1

where

U upq pqr. pqr ) at x (z+hz-h)1 1 ii2 i
A

(44c)

The continuity of electric potential is written as follows

P,•, (in)
V =0 ; m=l,2,...,N-l (45a)

p,cq,r=0 pqr

with '

:1m = (q'ppqrY~ -_(Sq,, -p) (m+l)Idt (45b)pCri =' (' q pqr) p''- ý qr 'pqr)

where

pq p q dA pqr I " '= (x3)r at x3 (z+h,z-h)A Pqpr pr

(45c)

is introduced as in (45) and equations (39) and (42) are used.

The continuity conditions (40,42) are explicitly given in
the next section.
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Initial conditions

In view of equations (13), the initial conditions are
expressed by

* * P,Q,R pqr (i) (to), &(i) (to) (m):0{ (ViWi 1 z U pqr 0 pqr o
p,q,r=O

P,Q,R (46)

_~, rO •pqr pqr o =p,q,r=0

where

(Vi, w : I dA f(v., ) pdx
A Z (47)

(U pqr ) (p )fx (x) rdx3i •pqr z I i'pq

are introduced.

S t r e s s e s and E 1 e c t r i c
Displacements

W'ith the help of equations (3)-(5), one obtains the
components of stress tensor as

tiJ Cijkl u Cki (48)Uk; 1+ O,k

and inserting (39) into this equation, the components are
written in the form

P,Q,Rtij _ Q, ijl ij2 uij3 13 + • )(3 r
p z (u pqr pqr Upqrspqr pqr Vpqr •pqr-pqr)
p,q,r=0

(49a)

ij2= ij13 3(19b)

Upqri [(r+l)Ci3(r-l)cij03ba]uq

+[cijlS-ciJGB (1- 0 r)b1 ] i:q
0, r y

Upqrij2= C(r+l)c ij 2 3 (r-l)ci73 b 2up~qo (49b)

ij3 {ci Cb +(1-6 )cJ

Upqr: •-b 0, r BI

+cij33(r+1)} upq+ciJc 3 (r+l)uPq
"3 3,a



237

,! n •1

kijr~ =C Lj + C3ij (r+l)ý (49c)
pqr (pqa pq

Similarly, the components of electric displacements are given
by

Scijku ij(50)
j;k

where equations (4) and (6) are considered. Substituting
(39) into (50), one obtains the components as

i P,Q,R il i2 i3 i 3 r
p,q r=0 pqr pqr pqr pqr pqr pqr pqrYpqr

(51a)
where

ui =(r+l)c il3 bio3bI pq
pqr L(a-1

+[iý-Cia (1-~5o)b cju 2 : 1bUp i2_ ( r r+l)C i23_ (r-)C ia3 b2]upq

Upqr a£ 2or

+ C i33 (r+l) } u3 pq c t (r+l)u 3,

and
i = C i (51c)•pqr ýpq,a+p

are defined.

C o n t i n u t y c o n d i t i o n s

The continuity conditions of tractions (40) are expressed by

P,Q,R 3(j) 1(3) I (i) 0

E[ 2 (C +C q r+Cr p (r
p,q,r=o j=l pqr o,pqr pqr pqrYpqr'

m=l,2,. .. ,N-1 (52a)

with
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Ci(in) =qii (in) ii (m+i), ij (i) =qii (in)_ ij(m+i)
kin kl ~kln Cakln o~l ~ (52b)

i(m) i(m) i(in+i)

where

klpkn A kcin- b8uikn) x)

(q 3L 31k3i (x 3) dA at x 3=(z+h,z-h) (53a)
A

(qv 3kin(x 3ndA
A

and.

(q au pa 3 n-i n 33 a +x3 t3v U a d
O~l;oakn A 0 ki o l~

a 3 3

(q 3 cp3  ~(x 3 ) ni t 3 vba u k dA
o,kin' o,kin A0 v (a)b

(q33 33 1P 3 )n-i n 33 uki + 3 t 3a uki d
oknokn A 0 ,

at t-he interfaces S m m+i between the iayers (im) and (n+i).
Likewise, the contin~iaty of surface charge at S mmlis

written in the formmmi

PQR 3
E U +d (rn)0  (54a)

pqr pqr pqr pqr pqr pqr

where

(f i W 3i (x3)n dA
(k 1 n k, 1 A kIik (x

f e f 3 dAat x =(z+h,z-h) (55)

(k~fl'ek~f)A 1 kIn A
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Iiere, the relationships (31) and the identities (32) arc
u s e cd

Va r i a t i o n a i n t e g r a I of
in c r e m e n t a 1 m o t i o n

The equations of incremental motion (16) are written for a
constituent in the form

-=dtiu.dVz at fdA I(t +t iku ) -

T B T A Z 0 ;k;I

-paj j6u. idx 3 =0 (56)
3

By using the identities (30)-(32) and (54) and the relationships
(33)-(35), equation (56) can be written in terms of the
shifted components of incremental mechanical displacements
as follows.

ýJ: $d6d$ a3 (•a ) b••+ 3a 6)
:ad S • a 0C3

T A Z

+ "to (u' -b u 3 )+Pta 3 uc 3 ]

36 ,/ xbA - a3-
a 0~t 3,s Bc x 0 ,31

r 3 S at3 -6 6--3 ,+ , +- u + t (u3  +b]+LP to (u : a c 3  o 3

33 33

+b a ("t,' t U .--a a-- ) +b ý3-3

+;it 0 u 3,3÷1: ua •,3
o 1a o 3 ,3+[t36t( +b StU +,It 0 33 +bu

o 3 ,aCu Cb u ),t 3 ,'33 ,3
--- 3

-. pu },3 u ) dx3 =0 (57)

BF insertinn, the exoansions (39) into this equation and
then performin.3 integrations over the thickness of
constituent, one reads
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6J= a fP,Q,R bV 3 v G
T A p,q,r=0 3 r B v r+1 :a

+L-b '63T v3+6 3 (b a6 jT v3+b T V- c TV9
var (j) v a r vo r V5r1

, [ - r ( T 3 ~ r - -b v r + p r Q r ] I ( j ' p q

P,Q,R P,Q,R 3 3 3 i(J
+J dt! (T R Z1

T A p,,q,r=0 k, , n=0 = = qknprl O

T A pD,c,r=0 k,1,n=0 3= prklakln pqrkln v pa~r

(58)

with the denotations of the form

r or z0

i r= (Ix 3) dx 3  (59)

ADj pq ,ADV =b U u
pqk n -+ruki orkln= n+-r+16,vki~j

(p 3i_ x= 3t - b"6 it 3ý )(x3 )r at x 3=(z+h,z-h)

r r ~ v Q

r r r

a n

T ') Tý73 +a , 3  uv u(v)
pc~rkln o,n+r kl:s o,n+r-1 ki :aj pq

I )X Mv 3 c 33 p
-bT' b' I ,Iu -r(T u -inT u)

,7 ,n+r a }zl o,r.+r-I kl:CT ofn+r--2 ki )

v 3 (V) 3a v3p
T[pqrk In =-To,n+r b5 uik.1 :a upq +rTo,n+r-1abcyuk1(

+ fl-b v (fPu 3  nTa 3  u31 (v
L a On~rlýJ~s o,nl+r-1 p

T 01ý =( C bv u( V) ) u -rT 3a b(v ) uv u 3
Vprrkinzo,n+r 3 k I :apq o,n+r-1 a, ki 1 PC

+ (b Ta I uk+1 b u~ )u3 0a
\8o,n+r k:3 o,n+r-1 \,e ki rxq
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U( u +InT u ) u -c T u "1". o n r k!, o' on +r-] I l: • ' o, n +r k I[•

3 +' 3 3 u3  ) 3-U 3 -17 nT u• u

o,n+r-1I, o,n+r-2 V PCI

a nd

3i , 3 3r 3
( , ) 3 ) at x -(z+hz-h)or' or o

Ri pi _i
or or or

(P Ov3 Qov3  n C V) p q
pqrkln' pqrkln o, n+r' oo, n+r o k1 3

o03 a 3 3 3 po (c 6C)

p, 7rk Irkln= (P'Q)o,n~rUkl, G+n(P'Q)o,n+r-I Uklu 3

" r k n ( P ' Q • v 3 p q3
(P ) =- Q) u U, at x=

So,nr a 0 (v)+r

r,) " (pC) a 5 ,•,+n(P,- 3  ,, 2

n o,n+r ik: G V) o,n+r-k ,;

Roij = Qoij

pqrkln pqrklIn

In eauaticn (58), the first term contains incremental stress
resultants, the second term includes acceleration resultants
and the third term accounts for mechanical bias, that is,

nial stress resultants. The incremental stress resultants
in the for

i (s) (S) i k
r kn+ s 0 kln 1klnrkln Kt, (61)

Ind the load resultants by

""i ) (S) I

0 k I nr -kln klnrs•ln (Eka
qkln__

i(S) ( ..) 31(s)-( ,u , b• i 3v (s)]

n'))lnr= L nrrk 3ln n+r+l VbC kk1n
31 -(7 ' ")b ri 3v

(Pq)knr n+- nr+l bVO

(62>)
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(p, , r U(x )r at x =(z+h,z-h) (62b)

and
P,Q,R 3i (S (s) i

R x { E k lnr Ika n + rr r
r k,l,n=O s=l klnr kin klnr0kln ( 6 2c)

i(s) i(s) rk(iq
klnr klnr ' knr klnr

are obtained through equations (49) and (59). Inserting
(62) and (63) into the variational integral (58) and
integrating over the midsurface of constituent, one finally
arrives at the equation of the form

P,Q,R P,Q,R, 3 3 . (i)Jl dt E E E [ z (Mij +M°1 prl)o'k!n
T p,q,r=O k,l,n=O j=l i=l pqrkln pqrkln

+ (Mj1 + +Nj)
pqrkln , pqrkln ]kin

(63)

+ 3 (iN + oNi (i0 pj .(j)
.Zpqrkln pqrkln' Kin pqrkln kin pa(r

for a layer. In this equation, the quantities of functions
(xe) averaged over the midsurface are defined by

Mij 3 ýE( j uJi- v uai2 +(-b% j
pqrkin .LUn+r kin s v n+r+lUkin) :a v a n+rA

3 v3 i
(j) v a n+r kin

+ 3 , v i r j
3. (b w n-rc ,jIu -r(pj u 3ji
j vn+r v n+r+l kin nn+r+l kin

u3 i)]uPq dAv a n+r kin (j)

pM i ob ) + (-b F
pqrknArkln v n+r+l kin :2 v o:n+r

+3 b v 3  
(64)+ ".)(j) n+r 0kin
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+, (bv u -c •- )¢ ( • rl i

3 3 j~p
j b V U n + r - CV R n + r + l1 k ln - r 4n + r- 0 k 1n,

-bc j r 3v )uq d- a kln dA

BI f(A 3  A V dA (64)
pqrkln A pqrkln pqrkln V

(K,L)ij = r (p,q)kflnru ) dApqrkln A

(K,L) rf (P,q)JI u q) dA

pqrkln A P lnr (i)

and

(K,L) pqrklnI (P,Q)oj dA (65
A pqrkln

(ý]NiJNi'~J)pqrkln= [(K-L)iJ, (K-L)i (KL)oijpqrkln

Moij Toij

pqrkln A pqrkln dA

in which all the quantities are constant by definition.

Equation (63) represents the variational integral of
incremental motion for a constituent, and it is now evaluated
for all the constituents of piezoelectric laminae as follows.

j= Z J ) 0 (66)

m=l

With the help of equation (65), this equation can be expressed
by

N P,Q,R P,Q,R 3
1J= ! dt 7Z Z Z ( i r(j) (m) (67a)
T m=l p,q,r=c k,l,n=0 j=l pqrkln6 pqr

w i t h

j(m) 3  ij (i) +M n 1 (m):p r l :[ Z, (M,1 +M° ) C
pqrkln L pqrkln pqrkln kln pqrkln kln

ii -O kqr (i) 1 (N)1 qrlnpqrkln'kn

- i•_l (LJklj +L°~ 13 )c in] (675b)
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+ (N) (Lj (i)
pqrkln kln pqrkln kin

_ (PBjDj ) m (67b)
pqrkln kin

In equation (67), the continuity conditions of tractions (52)
are taken into account

Variational boundary Cond it ions
of t r a c t i o n s

Paralleling to the above derivation, the associated natural
boundary conditions of tractions are established. The
tractions are taken to be specified on the edge boundary
surface Se , while the displacements (39) are prescribed on
the faces, and hence the variational surface integral (16) is
written in the form.

*i N
=dt ,uidS= Idt £ Z IV

T ;B T C m=l Z m

(taj+tkj k) (m)u() 1jdcdx
3  (68)0 ;k j dd (6

By using (30, (31) , (39) and (62) , one obtains

. N P,Q,R P,Q,R 3 ( j) (i)
iJ If dt Z E (xpqrkln6apqr) (69a)

T m=l D,q,r=0 k,l,n=0 j=l

where
3*j(i) i(inK .... ~21H (i)

**im - M -[ (13 013j (i)+H°3(j
.pqrkln pqr (lH pqrkln pqrkln )kln pqrkln kln

+Hklykl] (in) (69b)

with
H 3 aij b C 6 i aiu ()dc

Zpqrkln C a n+rUkn in+r+l a klndc (70)

H3  av ( bc a 6 a )u (j)dc
pqrkln • c n+r kln- n~r+l S Okln pq

and
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"oc(.') io3c• TBa

Ot( '- oH 3 a (T ýa 1
pq•rkln, pqrkln B o,n+r kl:a'

C
_m: T Ba U 3  (a)udc
a o,n+r+l ki pq

(Hoa 3  33vT (b k) 3 u do (71)
pqrkln' Hpqrkln) o,n+r au 'Ukl" ) pq

H i : v n T i U iu dcpqrkln C B o,n+r- uki pq

at I ,ai 3r 3 a*i ci ai Ta B (i)
T f';T* (x ) dx M v(Trb 6 T )u dc

Z pqr C Oa *r+l pq

are defined.

Variational integral of charge
eq ua t ion

As in the derivation of the variational integral of
incremental motion above, the variational form of the charge
equation of electrostatics (16) is expressed by

;Ii I dt fZ6dv= jr dt f dA f D dx3 (72)
T B T A Z

"for a constituent. The integration oý this equation with

respect to the thickness coordinate x yields

P,Q,R 3
"5I1 dt f dA ? (C -rC +e ) y (73a)

1 T A ~q~=O r:a r- r pq pqrT A p~q ,r=0

with

C -: jFD (x 3)r X

3 3 r 3
(Cr,d )=ID (x )rat x = (z+h,z-h); e =c -d
r r r r r

where the expansion (39) and the identities (32) are used.
In equation (73), the gross electric displacements and the
surface charge resultants are obtained as

i= k, i(s) (s) iCr: P n r( U Ukln akln + 'tklnykln)

k,l, n=0 s=O
P, QP, 3(74)( ,d) P,Q,P. , , ) 3i (i)+ 3 (4

c+' n) uklnikln+klnyklnk, l,n=O --
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Next, substituting this equation into the variational
integral (73) and considering it for all the constituents of
piezoelectric laminae, one arrives at

N- 1 P,Q,R P,Q,R (m)

6I= f dt Z Z Z (Xpqrkln ) (75)
T m=2 p,q,r=O k,l,n=O

with
(m) (i)+E

Xpqrkln i=! pqrklnkln pqrklnlkln
3 * (i)+ (N)

+~ ( pqrklnakln Wpqrknkn
i=l

3

-( 1 i (i)D pqrlnk anD (1) (71)

i=l pqrkln In pqr kln (7n

and

r3i p(EiE) porklný !F_ n+r (u ia) kln:t -rP n+r-I ( , k3)ki pq dA
pcrun nn•

A
i 3i dA a 3=( h z-)7 )

(DC) pqrkln=A fn+rukln4 pqdA at X(z+hz-h) (77)

3

(D,C) IP dA
pqrkln A n+r kln pq

Here, the continuity of surface charge across interfaces of
constituents (54) is included.

Variational electrical boundary
conditions

The electric potential is applied to the faces of, and the
surface charges are prescribed on the edge boundary surface
of piezoelectric laminae. Thus, the electrical boundary
conditions (16) are written as

N 3)
5*. f dtf t.6*dS= f dt 6 E f (o.-\x ) (mD6 0 ( dcdx

T 9B T C m=l Zm

(73)

As before, with the aid of equation (39), the evaluation of
this variational integral yields
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N P,Q,R P,Q,R (
S dt E (E E hpqrkln 6 (m) (79)

T m=l p,q,r=0 k,l,n=0 pqr
where

* * (i)
kpqrkln=Dpqr-( Z G pqrkln+Gprkln (80)

with

* 3 r dx3 * *
r *(x pdx Dpqr= Arýrp dc

i C

F ) ýv W ,u1a c )dc (81)pqrkln' pqrkln C oPn+r Ukln kln

Si (i I G = F

pcqrkln pqrkln kin , pqrkln pqrkln~kln

are introduced. The boundary conditions of electric
cotential are expressed on the lower and upper faces,
respectively, in the form.

P,,'R of
S( r ypqr) -4,=0 on SfXT (82)-p,s,r-0 pqrpf

7' (tpqrfpqr (N) on S fXT (83)

"'p,q,r-0 prpruf

p I qII

=- 0 =Z cos Wt (84)

which clearly implies that an alternative potential
'ifference is applied to the perfectly conducting electrodes.
In eqIations (32) and (83), p is a constant and (i denotes
the :ircular frequency. On t e other hand, if the electrodes
are si.->ritc, these equations are then replaced by

= = =0 (85)

on tne faces. The boundary conditions (82)-(85) are assumed
to he satisfied by (39) ; however, they may be easily taking
into account by use of Lagrange undetermined multipliers.
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System of ordinary differential
equat ions

At this point it is desirable to return the variational
integral (16) of the form

6X ai(m)m (M) } =6J+6I+6J. 6I,10 (86)pqr pqr

which has the continuity conditions (44) and (45) as its
constraints. This variational integral is Puamented
through Lagrange undetermined multipliers (X. and ' where
m=l,2,...,N-l and j=1,2,3) so as to relax 3 the m
constraint conditions as follows.

_' __ N 3 P,Q,R m i(m) (m)

E E E ( X (_ im p virm)X V m) )=0 (87

m=l i=1 p,q,r=0 i) par m oqr

which readily leads, after taking variations, to

N P,Q,R P,O,R
f . dt Z { x (Xpqrkln÷Xoarkln-•pqr)pqr

T m=l p,q,r:0 k,l,n=0 p-

3
+ • (x • + J) (SSa)j+ E qrkln oarkln 'par pqr

3
+ E V3 .• vX. V (m)=0
j=l pqr 3 pqr

where

(m) (i m))p(m) X 1( 1 5 M)q(m)
pqr 1 pqr N pqr m

(88b)j(m) _( _ Iliu"J(m) m-1 u'J(m)(m

pqr 1 pqr (j)+ N )N pqr (j)

Owing to the fact that the variations of (ap]m and Y r
and those of Lagrange multipliers are pqr
independent and arbitrary, it follows from equation (88)

P,Q,R 3
7 { (M13 4+M0 13 -H'1 -H01 ] M (i)

k,l,n=0 i~l pqrkln pqrkln oqrkln pqrkln (m)'kl (n)

(89a)
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+ r,, ](t) + (M3
pqrklnkln pqrkln pqrkln kin (m)

3 ) 3
Fij Koi01k(i) _[N (m'i

LY (K' r 3  n (t)]-)L pqrkln
pqrkln pqrkln kin - -il

+ Loij 1 (i) (In )

+ [K3qr 'k (t)] (N)_ IL j (t)] 1i+ ( A i) X m
pqrkln klnLpqrkln kln A')pq inpqr

*j(m) P,Q,R rkln a(m):-M + Z [pBj ýj t)]m
pqr k,l,n=O pqrkln kln

(89a)
and

P,Q,R 3 (i)
[ (El -E FC (t) +(E

Kln=O il pqrkln pqrkln kln pqrkln

pqrkln kln j

37 D 1 ()J+D (N)

L parkln kln pqrkln klnt)(

c (i) +() - (9mb)

pqrkln kln t pqrklnYkln pqr

This system of ordinary differential equations together with
(46) covern all the extensional, thickness and flexure as
well as coupled types of incremental motions for the
piezoelectric laminae under a general state of mechanical
bias. This system of governing equations which is second
order with respect to time is reduced to algebraic equations
for a case when the incremental motions become periodic as

J t ,' t-) (in) i= t r pq )
pqr par pal r

In such a case, a] is replaced by 3j y by v and
the left side of pqr equation (89a) brpq pqr

*j (ml 2 P,Q,R
-Mpqr +(,)2 Z BI OM I (m)ppqr k,l,n =0 pqrkln'kln (1
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in equations (89). Numerical solutions are available for the
system of governing equations under the boundary and initial
conditions prescribed for any case of interest.

5- METHOD OF MOMENTS

The method of moments is one of the universal methods of
solutions using computers, and it can be applied to almost
any type of field equations in differential form. Though
it is very popular in electromagnetic theory, the method of
moments is first described herein in Piezoelectricity
(cf.,[34-37]). Thus, this section is devoted to describe the
method of moments for a macromechanical analysis of waves
and vibrations in the Piezoelectric laminae under a general
state of initial stresses, as an alternative of the direct
method of solution presented in the previous chapter.

Mechanical displacements and
electric potential

The mechanical displacements of a constituent of the
piezoelectric strained laminae are expressed by

uk (xj't)=[vk (x )+x 3 wk (x) eiJt (92a)

with
P'Q (k) vPq (• k ~ x) 9

VkWk) = q=[ pq k 'pqk
p,q=0

which is a truncated version of equations (39) for r=l. The
expansion (92) is a generalization of the Kirchnoff-Love
hypothesis of shells, and it leads to a shear deformable
theory of shells. In accordance with (92), the electric
potential of a constituent is expressed by

(Dx(,t)=[K )+x 3 A(x) e 1(t (93a)

with PQ

( pQq (xp) ), (Cx>] (93b)p,q=0 Pq Pq ' Pq•P

In the above equations, a ,s ,y and v are unknown
coefficients to be PqPq pq Pq determined. ThePq
trial (approximating) functions (v,w)k and (.,T) should
all possess second derivatives, and they need not to
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satisfy any of boundary conditions, except that they should
not be zero for all (p,q) at any point in the closure B of
laminae where the exact solutions are not zero. However,
if the approximating functions do satisfy some of the
boundary conditions, certain desirable results are achieved
as pointed out by Holland and EeriNisse V4]. Owing to the time
dependence of the mechanical displacements and the electric
potential in equations (92) and (93), henceforth the factor
(exp j.t) and the integrals over T need not be considered.

In view of equations (92) and (93), the continuity conditions
(41) and (42) are expressed by

PQ• - .p (m). 0, i=1,2,3 and m=l,2,...,N-i (94)
p,q=O

(m) ' (m)(m 71 . -I m-l,2,...,N-1 (95)p,q=-, pq=,m(5

where

-. :pq•(zh• Wq (: v~+z-)SWqo(m) (i)vna÷ (i) pq(m) (i•vq i~q (m--l)
'I 0C 1 pq 1 pq i pq 1

,(m)( i)
-(M) +(z-'rh) L )(m)_(Ypqc +(z-h)v L ) (m+l)

w q pq pq pq pq pq (p9(96)
with

-C oc) •• (v, w)ýq ' (K • I d 7I(V,W)i ; (7, L) :q q, (97)•D

A

are defined as in equations (44) and (45).

S t r a i n and e 1 e c t r i c f i e 1 d
d i s t - i b u t i o n s

Substitution of (92) and (93) into the gradient equations
(3) and (4) gives the distributions of strain and electric
field in the form

P,0 2 1(Sij,Ei) 2 ( S.., 7 Ep(98

13 p,q r=O r 13' r=O r i

-where the notation
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p [ 0 (n) 3 2q'
S W -2b W _ (b v +b v

1 a j 2 pg O:' j :0 Cr19 pq 3 r=1 Ti V): 0Y VYId

+2c 39 q

Sp= 2 Oj pgp
2On 2vl =1-g~ \: TI T) paQ W) :OT Cg 3In

Spq=~ ~ ~ vOw:a~3p (v) pa)
_1 w +)v~ + b OL (99a)

0 Y332 pq - pg 3,0 v= 0 pq

1c3 -2 pq 3,ý: '2 Ux3

o 33=pq 3 0 33 1 33

and

Epq=-y < r:i-V pg E T~=% 3 q=

o a pg pa, E~- ~pq a 0E3 1Dq Pqg 1 3

are used.

S t r e s s e s and e 1 e c t r i c
d is pla ce me nt s

By use of the distributions (98) in equations (5) and (6),
one finds the components of stress tensor as

1] = 0 r= -~' k + w ij6 + <ij, +Y 1V ( 3 )r

(100)

and the components of electric displacements as

PQ 2 i k i k ii 3
D 7(V c ia + w -i k KY + ) rVH (101)
p,g= r=0 r pok pq r pgk pg rpg pg r pcq pg

where the denotations of the form

"o Dgc (0~ ~ ) lvpga q

--C'30 'lb v t ijo3 vpq ~ii ..ijvrC V3  (102a)
" pg3-Z pg 31'lpq3 v pg
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-j 1j,:3 qC ij la pq 131
0 P7,C(CY pq(o) '2 pCqa

0p3 3 1p3 vr, 3 3,5T
102a)

i =C i j V c w pq
2pq3 o n 3

o pq Ot opq pq' 'p

and

v =C lo ,PI q + iv3 b0 aPC v pq v1=i VT Civb vpCI

c pqo (a): v (o) 1 pq V (a):-I

v bv3 +ija3 vpq v 1 C3VI C v 3 10b
o pq3 o n pq 3,a1pq3 v T pq

0 q3 o 1 qT aýj2pqo (a):

S,i~j3 3wpq ijcij wC+l 3 pC
0 pq3 3 1* pq3 vn 3 3,5'7

2 w q3= C0 W 3

i ctpq 3j ii OL
0 pq -. p pC 1 pq

tb

v-] V UK-= (103)
2 p k 2 P,• ,< pq a pq 2' pq 2,pq 0

are introduce-!

%1a-c ros c op ic equ a t ion s of

Inc r e 7,e n. t a 1 m ot io n

Just as was done in the derivation of equation (58) , the
Variational inte-gral of incremental motion (16) by

inl A Z
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is expressed for the piezoelectric strained laminae. After
inserting the expansion (92) into this integral and
integrating over the laminae thickness, one arrives at the
variational integral of the form

N k k k k 2 k6J= : dA Z {(v +V +1 +1 kk )-pwak 6vk
A m=l o

+ L(wk+wk mk+Mk)p 2 bk] +M 0 b(m) (105)

Here, the guantities of the form

0 o0a" 0a 3 a aý a2V =(N• -bl" M" ) bCQa V =Q +b N -CcM
:a a:a a6 E

(106)
W=(M b K :.cQ W3 =Ra -N+b r M -c aK•

and

0o 0  :S 3 0 JýDww 3

3a
o 0 4 0 (v :, -bav 3 : - o : :w

o a Q b(w3
_N: (bav3 , CbV b Cv )_M(bW a C

V3 0 N (' v 0 _b 0v )] NM (w +[KQ (w0'b RA w

o o 3, $ *a• orla :

a a0

V 0 A-v, 3ba 0a a a S :
-(v + v )+[K (bw + -c S ) (i07)

o: A : J ,,,v3 0 a.c : 0 S0w3

o tr o , a 3 ua by
= (v° -bv v3-•( 3•bbv) (~

=-' •- v )(vc+b(W v) -Oo(b 3, +bbvw
o (ab3, 3 )M . - O 3 ,$÷a w° o 3, a

3 '•- N , -a ' ra5 a

o:R o),, 3 +M° (b,•v 0o-c 0 v )+K (b a -c )

in terms of the stress resultants, the load resultants by



9. i i i i i i i i i . 1_-a• , o=c o-a~ , (m ,mo•=(n po) (z-.h)-(q ,qo) (z-h)

(iC2

with

i i 3i 3< i 3,n3
(p ,o )=L t -x i >t ) -n 3 at x: =(z+h,z-h)

3 3
-o o 0 3 33- 0

3
at x 3 zrh,z-h) (1C3>

3 3 3. 3 b 33
(poo) to V 3 +b vý +x 3, +t 3

at x =(z--h,z-h)

th-e acceleration resultants by

k k Wk bk= v k ka = I: 0 v + i w, 11b 2

and the stress resultants by

-. - ' [ 3 3 2- t x3'
',• K Q, ' ,N'ý x .(x x

z
33- 3

t ;dx (11

3 3 273 3
\• K , (Qo,Ro) ,N = Ll , ,( - t , x(l, )t3

-o-01 0- 0 Q F 0 0o 0 ~ 0

33. 3
t3 dx (111)

are defined. In view of equations (92) , (93) , (100) and
(102'-(103) and after leng7thy computations, one finally
expresses the variational integral (105) in the form

N PQ 3 P,t: : dA _ {_(V-m)(i stD ' (X)kp

A a1, s,t:O i1l p,q: ~

2 -- St k p st (112)+( o' -,, : (X ) ,

-(W+K) (i)st(X) k 2 (i)stxk 7 sst}(m)
L ~ k ( pq ~o W0 Po B k ~ u pOCi
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Here, the column matrix of coefficients to be determined
is defined by

pq _-u ~pq -U pq pq Pý pq= pq' pq

(113)

the mnatrix of incremental stress resultants by

Vpqk =(a pqk bpclk a p b pq)v.

pqk cpqk pqk pq pq 1

with the coefficients of the form

a rpk O r vpqk ;jr r Vpeqk 5 L r+l ):a r vpqkb r

3 2 a3a55C
a L~ Z (v~J~ + v ,b U - v c

r,ýk r pkr :a r pqk cxý r r pqk qr1

aL 0 ccrr 5 bCrY~ ra 2 3 ar
a ~~r K:p q - pq bS Ir I) : t -rKp boor

a rp 1O[ r Kpq r ):a +r Kpg l r-r"pq ca r

2 ao a3 a%)- (114b)

.. , Lrw gk4 rBpg r+l:r

b3  2 -,3  at S q
bpq k r wpqk r ):a r wpkb a* jr-r Wpqk ,jrl

r=O

2
o 2 ' p r -r~~b~ rl~ .Z3 b%

pq r-O~ r5.p :-r r r pq a~ r]

3 2 b j- F'
b + b. )i I 1

pg r-O r pq r ta r'pq as5 r rcpq a,,' rI

and

23
c 2 Lr V pkpr+-r Vgk b~ ýr+2 v* jpK-
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2 [ 3,3D 3 3  
+ b va -p k r 0 r pqlk r + 1 ,t r pI; r r p qk,. a r+ I

-v C q' ]
2 r pqk ca r+2

r Dr pcr+l r prq J r +2 3K
co,]:•r : r pq ]

r=O r r r+2: r pqrr

2
d -E W - b p a3  c c)

Pci r=O r pqk r+1 r pq 2 r +2 'a r pq r

2 3 3 bL

q r r:0 r ,k'kr+l :a r pqk r r pqk 2 r+l r pq ct r+21

j 2 •a• ow3

(i.st [(i) stwu ] (1pq r= r pq or+k rpqk +2 :aq r pqk r

2

-13 - 33 a Q b Ct 9c~ C',r pqk'r+l :,, r'pqkpr+r 'pqkbcto r+1-r pqK c,, r+2
Pq<r=0

apqk a: C PC:r~ 'Kb pqk r+2 v• r pq (pq1 d )r

(115at atrihe coefficients of the form

Spqk , (a) o) : (

4 b bb vC

b 0 Pc o o4 2 b a a i

(ll p
a =Ci N o ( ) v-

o q- o 3q : :, o 2

ao)q (a)~n :

a -(N 'b vA +~

opp o 0 (a) :•o a 0 pq:2 llb
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(3) (NB v pq N _N8 C vpq

aopq 3  0  3 ,  :a 0 BO 3

(aj) 2 8 (a) a b oab (a) wpq

opqu o pq:8 +Qo Wpg ) 0 2 ,

(a) (is2b8 b w (1-6 a
opqn o a (n) b( )llb)

b (o ) (MO ws b q) a -pQbawPqb

opq3 0 B :a3 o 3 0o a 3,S

(3) (MaI (b a) pq +g (a ) +M (abw :)

b IMb W ) +Q' b w +
opqay o B a : 0 aB pg o cg pg

(3) .p 2 gp3

b ( 3)=IM aSwjp +Q aw )q -m Sac w
opq3 o 3( , 03 3 : 0 3

and

(a) (M v -Q ba p a Q s M a b(ab)v Pq
Copq3 o o 3 :a 2 0 3 o 2 3,a

(} ) aB b (a ) b n v pq ((a) Q
opqa 0 a) ha ) 0

( (a ) = basvpq +b G Q+MRa W ObK bvpq

opq 0 g9 : 3o3 a 0: o ac 3,

(a) a b (a) a a-

__ 0 2aU o a (a)

c(3) -(%1 as Pq ) - Q av -p -m v p s

Copq3:M 0v3,ý :a o 3,(X o Sa

(a) v- i (a) + (Ko a FýW 0+ oKa"bco (o)
d opqa o pq 0 pq: :at O:a O a a

d(0) =-K (aFb( ) bnw 1_-0

opq3 o 3 3 0 a 3



(3) a
dOp q K 0 b~j :K- b

d( 3) (K a S ) -c K cýIp + twqtiwo pq-3 o 3,~ :a C4 oS1 3 0Otc 3 0 3

the matrix of load resultants by

(i)st st- )(PQ()]~~pqk Vi L(P Q)pq (PC)

(Kfi)stý st [(R S)W (R S) (i](16pcjk- pgk pg
with the coefficients of the form

pqkr=OFrpqk r )rvpqk n a -r+l,

(2' ,2";R' ,Rv)' 1 2 K3 W K flbG6 (p,")] (117)
Pq r=0 Ir pg r r pg q a rll

IC ,Q"I;S I IS11)' 2 W w 3i U'') w 3 - b0 a U
PC:. - r pcr -r r pqk -r,,)

fqI tI
8 8

It = 2 3i (3') a
3  

i,

r=0 r pj -r r~pq n C7 r+ 1

with

pok Dk pok'" pgpg 2 (i)(18

-r rr r r+l r+1
a no,

(L ) (iLs st ( i) (K)(i)st Vst( ()
-C ogk, i 0 ~o pqk o0pqk i 0o0pq-k (19

with the coefficients of the form

1 11 1 it rjI 
P,[(2 po ,poP ,R ),...,R)][r )v0  (120)o a 0 pq(,J) o q3p 0o1 pq:a
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[(... R) ; '3 ,Rot 3~ [(r', )b pE~p'..,R0 pqoa o o pqPl=-0 a p

(a)v 3aq (120)

-0 3,,a

I a ~~ ~~~~~I . . it yrO W G +( w(

o( a o )pqk cT (ol 0 opqk' =-2p~ 0

I-i (rj 31cr 3
02 aa

0r~ C) (vi 31  0 +1 pq1 - 0 c

0 0

and the matrix of acceleration coefficients as

(ilst k k St (i)st k 'k st
(A) =(Uv Uwpq)v (B) pk (uj iVo .1> )1

(122)

in the notation of (59).

In view of the equations above, the continuity of tractions
is expressed by

2(m) P CQ I (i)St Mk 'f(i )st(X)k 1m
i(st)= 0 pqk (X) -pqk U q

-[Lot(i)st Mk Lff(i)St (X )k I (m+) 1 }= 0
-pqk pq pqopqk _u pg
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1=1,2,3 ; n=l,2,...,N-l

in which a prime (or a dnuble prime) is used to denote the
value of quantities at x 3 =z+h (or x 3 =z-h), as is used in all
the foregoing equations.

M e c h a n i c a 1 b o u n d a r y c o n d i t i o n s

The boundary conditions associated with the macroscopic
equations of incremental motion (112), are expressed in
variational form by

• -J •Jtk ) (,5v,+x Zw) dcdx}( + i k 3• k •
m=i C z ;"

(124)
which clearly imolies that the tractions are prescribed
on the edge bounlary surface and

(1) (N)=(!)=0 on S ifand 5u( =0 on Sf (125)

Substituting eq:ation (92) into this equation and making
use of the notation (110), one finds

* & cM - Jw +WL)].swA (i
C r-=l - 3v -*o

(126a)

"..;here

1:~ ,.< > .3 (~ ) d x 3 (126b)

a nd

c o N 3 a :cy c 3  o

0 0•3 =- 3 0 3 0
-ba-K, W :-N't (v3 -.3 ) + Kc (w -b wV a 3 a 3,•' • a K 3,o

-I + M (v -byv ) + 1 (wt +bjw ) S7IM o a Fa 0 3 3,0 a 3 +0
':Li3 a C4 3 at1 (

WI~ '34 +bv ) .1K0 (W 3 S +b Sw aj (127)

After considering the ezpansions (92b) in (125) and then
following some rearrangement of terms, the variational
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integral (125) takes the form

N 3 ,, . J(i) PQ L(i)st ~
6J*= 0vdc Z E E ({N - z [ V ('I)

C a m=1 1=1 s,t-O s piq =0 )pqk p

aOi~st k st OL i) -PQ -(i)st k
+(o )q (u )q} +{M 5  [(W) WX

)0 (X up s prq = 0 pqk -pq

+ (1 ) a(i)st x ) I6Dt (m)(1)
~opqk (X )k (126)

where the prescribed traction resultants by

(N *,JIM p (T*i-b.%'0T )(V. (129)

in the notation of (71),the matrices of tractions by

Ws'i) ai a1 al1 I i -t
(V), s(a1 a a b b b )v~

- pqk pqk pqk pqk pqk D k p i

aist 1 1 2. t
cCd iws (130)

-ak Oak PC- k

-ith the coefficients of the form

2 2
(a) E h ) (V) , (c) D_0 = __ ( i ) (V)"
-pqk r r pqk' - qk r- r+1 pqk

(a2 '3 a3  (w 3 (131)

where

(a) ,(a` a b b " ) ,(cia (C 'I 3 Ca 3  a3 OL
- pqk= i1Zpq txik pg - p~k= pqk CDq 0Pgk pg

( )i3 (a )=( ) (1 C ,3 C,' 3 2

-r r ýIr+1 12

and
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ct,{

rVpqk r pqk r pqk r pqk

('pqk= - v • -a b -
r pqk • r pqk F r pvqk • r pc

A 3 a •3 a3 113 a3r Vo r< W 13

pqk r pqk r pq r pqk r'pq) (133

and the matrices of initial tractions by

a(i)st A(i) qa (i) st pist( (i) (i) st
~0 pqk opqk opqk i o pqk : opqk opqk

(134)

with the coefficients of the form

a )N v , a =-N b popqC'V o pq:J opq3 o Jv3

.3 =N p Sa3 N ,pq
aopq• 0 ) opq3 o 3,q

bo q(): : 'o• _c2. .c•J_ ? o
bp : W Q W ,b op 3--M b'w -,

ooq( 7 V) o par:G o pa' opq3- o a 3

, a 3 : .% a , b ' wP q f b a 3 = M %" -t Iw ( 1 3 5 )
opz(ý o •) ) ,b opq 3=o 3 S

C N= :4 ,c ' =-MCat7b pq
opq( ) o Vpq:Z opq3 o jv3

Copq 'o ) o q3 ' v-,

d -W R Wd -A=-K C b Rp
opq( o pq:c o pq opU=-3 0 J 3

K'x ,: b (i w r' Id(,43 a ý= a w pq

oc 0 0 Op 0 3,

are defined.

M a c r o s c o p i c c h a r g e e q u a t i o n of
electrostatics

Likewise, after inserting (93) into (16),the variational
inteqral of charge equations by
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N-I 3) (136)
EI= C fdA fD .i(K+x E))jdx ](16

m-2 A Z

is expressed for the piezoelectric laminae. From this

variational integral, in view of the expansion (93b) and
after carrying out integrations with respect to the thickness

coordinate, one obtains
N-I -( m)

r: rdA E [(V+I) 6K+(W+m) j (137)
A m=2

where

V=CW=F _C ; 1-c-d, m=f-g

i i i 3 3(18
(C ,F) f D (l,x )idx (138)Z

3 3 3 3 3
(c,f)=Vn3 (l,x )D at x =z+h;(d,g)=-jn 3 (i,x )D33

x 3=z-h

Now, substitution of (93b) into (137) results in

N P,Q PQ s kt

.i= dA 72 Z Z (V4.L) pk(X)k pq6-Y
A m=1 s,t=O p,q=o

+(W+K)st W k v (m) (139)

~ ~pqk pqk" st

where

(V) =(a b a b )K (W) st t(c d s ) St
(V)pqk pgk pk pq pg -pqk= Ipqk Pk Cpq pq

(140)

with the coefficients of the form

2 2
a ibC= 2 vqk :b -2,

apqk r0 r pqk:cj r pgk Z r w0 k: a r

2 2

a pq r < K w ,b T (141)ap=r•0r Pq: r'bpqg r=0 r pq:• r

pgk= r0 rVpqk:ci r~l-r pqkr)'r

2 w 3 1
d p= (rWpqk:cx4r~l-r pqk r

dpk= r=O
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2 62

cl ),d d Z( vpqvr)
Cpq r=O r pq::• r-l-r pq r pq r-O rz'pq:a r-l-r'pg r

and

(L)St (c)St - (d)St (K)st =(f)st (g)St (142)

~ pqk - pqk- pqk pqk - pqk- pqk

with the denotations by

I"t] st 2 (~ 3L(c)St (d) St s =K Z (V3
pq pqk•= = r r r) pakr=0

r t(f)St St •_<st2 3
pqk' - pqk r=O (r+l' r+l) r~ pqk (143)

and i) ( v w •i (144)
(rY pqk= r Vpqk r Wpqk r Kpq r pq

are introduced

In view of equations (42) and (138), the continuity of
surface charge by

1(m) PQ st kqC (m) [•dst k X (q (ml)= 0st - { q() X -p pqk(X pq
p,q= 0 pk p~ ~

m=1l,2,...,N-1 (145)
2 (m) P'7Q (f) st k (m) [(g)t (x)k (m+l)-0
St ,q=0 pqk pq pqk -P 1

is given.

Electrical boundary conditions

As before, the electrical boundary conditions (16) is
written in the form

N 3 3 ~(m)
N •_{ -. D') (Y<+x 3 )v4 dcdx (146)

m=l C m

with

Z¢'=•"=0 on Sf (147)

for the piezoelectric strained laminae. In the boundary
conditions above, the surface charges are taken to be
prescribed on the edge boundary surface, while the electric
potential is applied to the faces as in equations (82)-(84).
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After inserting (93) into (146 ) and then integrating it
with respect to the thickness coordinate, the variational
boundary integral can be put in the form

N
I. Z • {L(C.-va C)K+ (F.-, , ) Fa ]dc} (148

m=l C

where the edge-surface resultants are defined by

(C*,F*.)= f.(l,x 3 )ldx 3  (149)
Z

Lastly, a substitution of the expansion (93b) into the
above variational integral gives

N PQ P'Q st{I: dc Z _( X {[Cst Z (C)p (Xk I4ys
C l , *st: p,q:0 pqk pq" st

PQ

r st k[F (F)pt (x)k "1 (i) (150)+p,q=0 - pqk (pql st m

Here, the denotations of the form

st st
sP(C) pqk>l=C*I (C) pqk]K

[Fs,(F)pqtk] = F,(F) sk t (151)
pq pqk]

2(C F vu ,a)(CFpqkzvr, r' r+l r- pqk

are introduced.

G o v e r n i n g e q u a t i o n s of
ez o e 1 e c t r i c 1 a m i n a e

Now, setting the variational ,integrals (112), (128), (139)
and (150) equal to zero, for the arbitrary and independent
variations of the coefficients (ststs I andst

st St'Yst sone reads the macroscopic equations of
incremental motion as
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(:)st P' (i)st, k 2 (i)st uk (m
(m) l - - )pq -0 -A pqk _ (

p,g=0
on A (152)

st E [ [(T K) (i) st Wk (W %+Lo_ 2 B) (i) St (Xu) k](m

(m)2 p,q pqk -o -o - pqk ~u pg

with the following natural mechanical edge conditions

(i)st N ( i) P- Q ist k +(W (i)st k (m)
.(m) 1 = t (g*=t - pqk pq _o pqk (u pa-

PQ along C (153)
(a )st cc (i)St k W(i)St( (m)

S:,,<(_-~ - pg•
on A (154) W X

m 2"o pgpqk [~ 'q p• ( ) 2 "• '*s• p,q:0

ani the macroscopic charge equations of electrostatics as
s t st k (m)

(st) + L) (X)
* (in) 1 *st:0 p• - Pq

alon A 
(154)

[ kr (+ K ( X)

(st) *st (+ p t( k

'-*)2 P 0 pqk - pq

wit h flloin naura eecticl bunarylong ditions

st k

(st) =• '7 (F)p MX
*•(m) 21 -*st- -•q~ - pq

Here, it should be nioted that (~, )(i)st and (E ,E ) s are
not ecual to zero due to the approximate

nature of the expansions (92) and (93). The macrosconcic
equations above together with the e-uat'on (94)x,(95),(123
and (145) for the continuity of mechanical displacemenss,
notea lectrode- potential and surface charge const4
th- a-.•,)rox nxate, hi•.,her order governing equations for the
n~eioelectric strained laminae.
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Moment equations

At this final stage, in view of equations (94) ,(95), (123),
(145) and (152)-(155),the moment equations of the form

.[Cs Wi +Xi (st) G (m) Ij Wi) (m)] S t O(m) i (st) S t

(st)'3 (o)m (i)st m 1i *1idst 10)m 1 2 -

A C

(156)

r m + (st) E (m) X •(m)] xSx2 dA O l 60 (st) Xst dc=0
A LI (st) I (o)mi (i)st im 1 2 C (o)m 1 2

A C(157)

are established so as to compute the matrix of unknown
coefficients as

Wxk(m) (k(m) k(m) Y(m) (m) )T (158)

~ pq pq pq pq pq

with

k=1,2,3 ; (p,s):l,2, .... pp ; (qjt)=l,2,...,Q ;(159)

m=2,3,...,N-i

for the governing equations of piezoelectric strained
laminae. Here, (m) does not take the values (1) and (N)
since the mechanical displacements and the electric potential
are given on the upper and lower faces of piezoelectric
laminae as already indicated in equations (125) and (147).
iso, ,i(st) (i) (st) I i(st) and u (st)are Lagrange

'()m' m ' (O)m' inm ' (o)m (j)m

undetermined multipliers and are introduced to take into
account of the continuity of tractions (123) and mechanical
displacements (94), that of surface charge (145) and electric
notential (95) and the mechanical and electrical boundary
conditions (153) and (155), respectively.

The moment equations (156) and (157) form a system of
simultaneous nonlinear algebraic equations in terms of the
unknown constants (158), and they can be solved by standard
techniaues of numerical computation for any special case
under consideration.

Some applications of the moment equations for special
motions of the piezoelectric strained laminae are the
topics of future study, and they will be reported elsewhere.



6- 2'U SPL,>?IAL CASiK5.

To 0pr-ed.ict tho dynamic resoonse of a uDiezoele,---ric _t r.iCSr -J
laminae, two unified algorithms of solutions based upo:<
Kantorovirn's method and tne method of moments are ',strth~ d
in invariant form in the previous two sections. Thus,
they can be readily applicable to the macromechanical
analysis of the piezoelectric laminae using the most suitabo!
syst-e of coordinates for its geometrical configuration.

ow, ~the results of two unified algorithms are specialized
so as to obtain those involving special geometry , kine:ratics,
incremental motion, material properties and mechanical bias.

On geometry

In the absence of curvature effects in which case the
shifters are reduced to the Kronecker deltas, namely,

b :' 0 1 - = •( 6

then the resultfr reduce to those of piezoelectric stral-4
laminae with plane constituents. Likewise, the case of
shallow,; constituents can be readily introduced. Moreo',:ver,

a particular geometrical configuration is considr-rei,
t-e resIlts of t'is particular case can be stated with the

c-o the succint notation of tensor analysis used herein
choosing the most appropriate coordinate system for

Sgeometr. As a particular case of interest, consider
a oiezoelectric laminae with constituents in cylindrical

. The piezoelectric laminae is referred to the
-"lindrical coordinate system (x,e,z) with x=xl being Eaken
in I-e axial direction, c=x in the circumferentialdirection,

z =x in the radial direction. The origin of the cylindrical
corlinate system is located on the midsurface A of first

c tent with its radius of curvature P, and hence, the
first, second a thn r -I fundamental iforms of t- mosura:-_ace

are recorded in the form

•,2 11 22
= /a , a22a :1 ; b 1 =-I/R c i1

a . ... r -a . b ý , .} C )160"2 2 11t•Z

wen " is ta;en., to be equal to I, the resulting
.. uatons become esnecially suitable for numerical solutions
or a recent the=orv of piezoceramic shells under a bias Flo]
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On kinematics

In the field of mechanical displacements (92), by choosing
the components as

w (V +b7 v ) W 3= 0 ; =0 (162a)
w ( 3,a a 3

one obtains the Kirchhoff-Love theory of curvilinear
piezoelectric strained laminae. By virtue of the continuity
of mechanical displacements (41) and that of electric
potential (43), equation (162a) implies

- ~3-u =v -x (v +b vc), u =v 3  and • = (162b)
a a 3 ,a a a 3

for all constituents. Apparently, equation (162) leads to
the results of piezoelectric laminae within the frame of
the effective modulus theory of composites (e.g.,[38]).
This has the contradictions of the Kirchhoff-Love hypotheses
in each constituent and also it is unable to account for
the dynamic interactions at the interfaces of adjacent
constituents. Further, the results can be simplified for
the case when some of the layers are very thin. Hence, on-
reads w(m)=0 and tq 3 =0 for the very thin (m)-th constituent
of piez~electric lAlnae. Accordingly, the terms involving
with 5w (M) are discarded in the macroscopic equations ofk
incremental motion and the associated mechanical boundary
conditions.

On incremental mot ion

In the field of mechanical displacements (92), vastands for
the extensional (or the stretching) motions, v and w for
the flexural (bending) motions, and w for the thickness
stretching of constituents. Accordingly, for the flexural
type of incremental motions, only the terms involving v3
and w should be kept in the resulting equations of
oiezoelectric laminae. However, all the terms should be
included for the coupled type of incremental motions.

On ma t e r i a 1 properties

Special classes of materials for the constituents of piezo-
electric laminae may be considered in the constitutive
equations (48), (50), (100) and (101). Of the classes, the
constitutive relations of the form
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cijkl - 11(i) (i) i3(i)33 1313 1 1111 2222)1

cij% 112,CI113, 333 i (i)iC , C

are recorded for the constituents when the direction of
[olarization coincides with the thickness coordinate x 3 ,
139J . In this case, the number of independent material
constants is reduced from 45 to 12 as indicated in equation
(163).

Mechanical bias

In the present analysis, the piezoelectric laminae is
subjected to a general state of initial stresses. Several
restrictions can be readily taken up in this mechanical
bias. Besides, when the terms involving the bias, that is,
th--e indicated by a zero index are discarded, the resulting
C ions provide a standard basis for generating approximate

2t solutions for the piezoelectric unstrained laminae
.,L51). On the other hand, if the terms involving

incremental motions are omitted, the standard basis is
provided for a piezoelectric unstrained laminae subjected to
large displacement gradients and large angles of rotation.
In addition, dropping out the electrical terms, one readily
obtains the standard basis for a multilayer shell.

Lastly, a complete linearization by discarding all the terms
of mechanical bias leads to a fully linear suystem of
alaebraic equations, that Ls, equation (89) for Kantorovich's
method and equations (156) and (157) for the method of
moments; their solutions are always at hand.

7- CONCLUSION

To provide a stand.Jd basis for generating approximate
direct solutions for the macromechanical analysis of a
piezoelectric laminae under mechanical bias, two unified
algorithms are presented which are based on Kantorovich's
method and the method of moments. Both the methods, though
t-hev are well-known in computational physics, are overlooked in

.i.e.z.e.letri..ity, and they are first formulated herein, within the
author's best knowledge, for the numerical treatment of piezoelectric
elements. The numer4cal algorithms are formulated on the
bases ot expansions (39) , (92) and (93) which are
comilete in the closure of piezoelectric strained laminae
due to Weierstrass's theorem. The formulation being in
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tensor notation, the resulting equations may be expressed
in any particular coordinate system most suitable for the
geometrical configuration of piezoelectric laminae under
consideration. The resulting equations by both the methods
(39) and (156), (157) take into account all the significant
electrical and mechanical effects in the constituents of
piezoelectric laminae, and also, all they maintain the
continuity of mechanical displacements, electric potential,
tractions and surface charge at the interfaces of constit-
uents. These equations accommodate all the incremental
types of extensional, thickness and flexural as well as
coupled, small motions of a piezoelectric laminae under a
general state of initial stresses. Further, soecial cases
are pointed out involving geometry, kinematics,material
propecties, mechanical bias and small incremental motion.

Both the algorithms formulated herein and especially the
algorithm based on the method of moments seem to be an
efficient and computationally easy method in investigating
the dynamic behavior of piezoelectric strained laminae, as
it is anticipated by similar algorithms in electromagnetic
theory. The algorithms may be readily extended so as to
incorporate the biasing of electrical, thermal and even
magnetic fields (e.g., 40 )and also to take into account
the viscoelastic properties of constituents by replacing
their elastic stiffenesses by their corresponding convolution
integrals. Besides, both the algorithms may be formulated
for the macromechanical analysis of a piezoelectric one-
dimensional element L41]

In closing, the application of two algorithms which remains
to be exhibited for certain motions of the piezoelectric
laminae by choosing its geometry, electro-mechanical
properties of constituents and mechanical bias is a tooic
of forthcoming studies.



273

REFERENCES

[i] M.C. Dbkmeci, "Recent advances: Vibrations of
piezoelectric crystals", Int.J.Engng.Sci., vol.18,
no.3, pp. 431-448 (1980).

[21 M.C. Dbkmeci, "Dynamic applications of piezoelectric
crystals; Part 1: Fundamentals; Part II: Theoretical
Studies; and Part III: Experimental studies", Shock
Vib.Dig., vol.15, no.3,pp.9-20; no.4, pp.15-26; and
no.5, pp. 11-22 (1983)

[3] M.C. Dbkmeci, "Recent progress in the dynamic
applications of piezoelectric crystals", Shock Vib.Dig.,
vol.20, no.2, pp. 3 - 2 0  (1988).

[4 R.D.Mindlin, Theory of Beams and Plates, Lecture
notes at Columbia University, New York (1968).

r-51 M.C. Dbkmeci, "Theory of vibrations of coated,
thermopiezoelectric laminae", J.Math.Phys., Vol.19,
no.1, pp. 1 0 9 - 1 2 6 (1978).

67 V.G.Karnaukhov and I.F.Kirichok, "Refined theory of
laminated viscoelastic piezoceramic shells with
allowance for heat generation", Sov.Aoppl.Mech.,
vol.21, no.6, Op. 574-580 (1985); Prikl.Mekh.,
vol.2_1, no.6, pp. 53-60.

r77 V.G. Karnaukhov and I.F. Kirichok, "Thermomechanical
theory of layered viscoelastic piezoelectric shells
polarized in one coordinate direction", Sov.Appl.
Mech., vo.22, no.11, pp. 1074-1086 (1987); Prikl.
Mekh., vol. 22, no.11, pp. 7 1 - 7 8 .

"-8- Yu.B.Evseichik, S.I. Rudnitskii and N.A. Shul'qa,
"Equations of vibrations of multilayer piezoceramic
she Is with tangential polarization", Sov.Appl.Mech.,
vol. 24, no.8, op. 758-763 (1989); Prikl.Mekh.,
vol. 24, no.3, po. 36-41.

"_9- M.C. D,5kmeci, "Dynamics of piezoelectric laminae under
a bias", Proc. 44th Ann. Symo. Freo.Contr., pp. 394-
405, IEEE, New York (1990)

LO0- M.C. Dý5kmeci, "Shell theory for vibrations of
piezoceramics under a bias", IEEE Trans. Ultrason.
Ferroelec.Frea.Contr., vol. 37, no.5, pp. 369-385
k1990).



274

[ii] G.K. Mikhailov and V.Z. Parton, Applied Mechanics:
Soviet Reviews, Volume 2: Electromagnetoelasticity,
Hemisphere PubliShing Corporation, New York (1990).

[12] K.Shintani and S.Minagawa, "Fields of displacement
and electric potential produced by moving dislocations
in anisotropic piezoelectric crystals", Int.J.Engng.
Sci., vol.26, no.8, pp. 8 9 3 - 9 0 1  (1988).

[13] K.C.Wagner, "Spurious bulk waves in SAW filters with
apodized transducers", Proc. Ultrason. Symp., vol.1,
pp. 35-38, IEEE, New York (1988).

[14] H.S.Paul and M.Venkatesan, "Axisymmetric vibration
of a piezoelectric solid cylinder guided by a thin
film", J.Acoust.Soc.Am, Vol.80, no.4, op.1091-1096
(1986)

[15] R.Salamon and F.Chinchurreta, "Analyse Piezoelektrischer
Breitbandschwinger unter Anlehnung an die
Differenzengleichung", Acustica, vol. 67, no.1, p-p.
19-29 (1988).

I16] G.Kovacs, G.Trattnig and E.Langer, "Accurate determina-
tion of material constants of piezoelectric crystal
from SAW velocity measurements", Proc. Ultrason.Svmp.,
pp. 269-272, IEEE, New York (1988).

177 H.S.Paul and M.Venkatesan, "Wave propagation in a
piezoelectric solid cylinder of arbitrary cross section
of class 6 (bone)", Int.J.Enqng. Sci., vol.27, no.7,
cc. 847-853 (1989).

718] H.L.Zhang, M.X.Li and C.F.Ying, "Comolete solutions of
the transient behavior of a transmitting thickness-
mode piezoelectric transducer and their physical
interpretations", J.Acoust. Soc.Am., vol.74, no.4,
pp.l105-1114 (1983).

L19] R.Shuchu, "Scattering of plane wave by piezoelectric
cylinder-transfer function, transient response and
phase reconstruction of transducer", Chinese J.Acoust.
vol.5, pp. 2 3 7 - 2 4 8 (1986); Acta Acustica, vol.9,
pp. 345-358.

[20] R.E.Challis and J.A.Harrison, "Rapid solutions to the
transient response of piezoelectric elements by z-
transform techniques", J.Acoust. Soc.Am., vol. 74,
no.6, pp.1673-1680 (1983).

[21] H.Allik and J.R.Hughes,"Finite element method for
piezoelectric vibration", Int.J.num.Meth.Engng., vol.
2, no.l,po.151-157 (1970).

L *-*-- -



275

[22ý J.T.Oden and B.E.Kelley,"Finite element formulation
of general electro thermoelasticity problems", Int.
J.num.Meth.Engng., vol.3, no.1, pp.161-179 (1971)

E23] K.Tanaka and M.Tanaka, "A boundary element formulation
in linear piezoelectric problems", J.App.Math.Mechs.
(ZAMIP), vol.31, no.5, pp.568-580 (1980)

[247 P.P.Silvester and R.L. Ferrari, Finite Elements for
Electrical Engineers, Cambridge University Press,
London (1983)

[257 R.F.Harrington, Field Comoutation by Moment Methods,
Krieger, New York (1983).

r2 67 J.J.H.Wang, Generalized Moment Methods in Electromag-
netics, J.Wiley, New York (1991).

L27] L.V.Kantorovich and V.I.Krylov, Approximate Methods

of Higher Analysis, Interscience Pub., New York
(1958).

28] H.F.Tiersten, "On the nonlinear equations of

thermoelectroelasticity", Int.J.Engng. Sci., vol.9,
pp.587-604 (1971).

-297 J.C. Baumhauer and H.F.Tiersten, "Nonlinear electroelastic
equations for small fields superposed on a bias",
J.Acoust.Soc.Am., vol. 54, pp. 1017-1034 (1973).

F30& M.C. Dýikmeci, "Quasi-variational principles for
strained piezoelectric continua", Proc. Int.Symp.
Strength Matls. Struct. Components Sonic Ultrason.
Fre_., np.203-208, Acad.Sci.USSR and Ukr.SSR, Kiev
(1987).

317 M.C.Dbkmeci, "Certain integral and differential types
of variational orinciples in nonlinear piezoelectricity",
IEEE Trans.Ultrason. Ferroelec.Freq.Contr., vol. 35, no.6,
pp. 775-787 (1988).

>2 O.D.Kellog, Foundations of Potential Theory, Dover,
New York (1953).

332 L.Librescu, Elastostatics and Kinetics of Anisotrooic
and Heterogeneous Shell-Tvoe Structures,Noorhoff,
Leyden (1975).

_34- R.Holland and E.P.Eer Nisse, Desian of Resonant
Piezoelectric Devices, Res.Monog. No.56, The M.I.T.
Press, Cambridge (1969).

J35_ H.F.Tiersten, Linear Piezoelectric Plate Vibrations,
Plenum Press, New York (1969).



276

[36] J.Zelenka, Piezoelectric Resonators and their
Applications, Elsevier, Amsterdam (1986).

[37] T.Ikeda, Fundamentals of Piezoelectricity, Oxford
Univ.Press, Oxford (1990).

E38] T.C.Ting, "Dynamic response of composites", Appl.
Mechs.Rev., vol. 33, no.12, Dp.1629-16 3 5 (1980).

[39] IEEE Standard on Piezoelectricity, IEEE, New York
(1978).

140L C-.N.Burlak, "Coupled acoustic-electromagnetic
waves in piezoelectric plates", Akust.Zh., vol.30,
no.6, pp. 834-835 (1984); and Sov.Phys. Acoust.,
vol.30, no.6, po. 496-497 (1985).

I41 M.C. D5kmeci, "A beam theory for vibrations in
thermooiezoelectronics", paper at 112 th ASME
Winter Ann.Meet., Atlanta, Dec. 1991.



277

ACKNOWLEDG EMENTS

The author would like to take this opportunity to thank
Dr. Arthur BALLATO, Dr. Julian J. WU and Prof.Dr. Harry
F.TIERSTEN for their kind interest and valuable advice for
this research project, and especially, he is greatly
indebted to Prof.Teoman OZALP and Late Dr. Solomon J.BECERANO
for their continuous support and guidance in his academic
activities.

Much gratitude is due to Prof.Dr. GUlay ALTAY A$KAR for
things made possible only with her enthusiasm and for
her indispensable help, after the author's home fire, with
the preparation of this report.

He also wishes to thank Bn. Zibeyde KOSE for carefully
typing of the manuscript and acknowledges the support in
part by the U.S.Army throuah its European Research Office.


